PointNetGPD 使用与安装指南
PointNetGPD PointNetGPD实验复现与注释 项目地址: https://gitcode.com/gh_mirrors/poi/PointNetGPD
1. 项目目录结构及介绍
PointNetGPD 是一个用于直接从点云数据定位机器人抓取配置的端到端评估模型。下面是其基本的目录结构概述及其关键组件说明:
├── apps # 应用程序脚本,包含数据处理和预处理脚本
│ ├── generate-dataset-canny.py # 候选抓取采样和评分脚本
│ ├── read_file_sdf.py # SDF文件读取处理
│ ├── ycb_cloud_generate.py # 深度图转点云脚本
│ ...
├── data # 数据相关文件夹,存储模型、点云数据等
│ ├── google2cloud.csv/pkl # 数据转换文件
│ ├── PointNetGPD # 程序运行所需数据集
│ ├── ycb_grasp # 抓取样本数据集
│ └── ... # 其他数据子目录
├── PointNetGPD # 核心代码库
│ ├── main_1v.py # 单视图点云,2类分类主脚本
│ ├── main_fullv.py # 全点云,2类分类主脚本
│ ├── model # 模型定义文件
│ ├── ... # 其它源代码文件
├── requirements.txt # Python依赖项列表(Python 3)
├── requirements2.txt # Python 2环境的额外依赖项(虽然推荐使用单一版本)
├── ...
注意:apps
目录中的脚本对于数据预处理至关重要,data
目录则包含了训练和测试所需的处理过的数据。
2. 项目启动文件介绍
主要运行脚本
- main_1v.py: 适用于单视图点云的二类分类任务。
- main_fullv.py: 处理全点云的二类分类任务。
- 还有其它变种 如
main_1v_gpd.py
支持GPD功能,适应不同的点云处理需求和评价标准。
启动命令示例(以单视图点云训练为例,假设使用Python 3环境):
cd PointNetGPD
python main_1v.py --epoch 200 --mode train --batch-size x
其中,x代表批次大小,应大于1。
3. 项目的配置文件介绍
尽管项目没有明确命名的配置文件,其配置主要通过脚本来实现,特别是以下几个方面需注意:
-
环境配置:通过
.gitignore
和requirements.txt
,requirements2.txt
来管理Python环境。- 使用pip安装必要的库。
- 根据Python版本(2或3),选择正确的依赖文件安装。
-
数据集配置:数据集处理涉及多个步骤,包括SDF文件生成、点云生成等,配置分散在
apps
目录下的脚本中。- generate-dataset-canny.py 需要指定CAD模型路径、生成的抓取候选和评分配置。
- ycb_cloud_generate.py 配置深度图到点云转换,可能涉及输入图片文件夹路径的设定。
-
模型配置:主要体现在模型定义文件中(位于
model
目录下),以及训练脚本中的超参数调整,如批大小、学习率、训练轮数等。
特别说明:在部署项目前,确保正确设置了所有外部依赖(如ROS、特定版本的meshpy和dex-net,以及Python PCL库等),并且已按项目要求正确准备了数据集。初始化环境和设置正确的路径是成功运行项目的关键。
PointNetGPD PointNetGPD实验复现与注释 项目地址: https://gitcode.com/gh_mirrors/poi/PointNetGPD
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考