RxCommand:让Flutter应用更响应式

RxCommand:让Flutter应用更响应式

rx_commandRxCommand - Reactive event handler wrapper class inspired by ReactiveUI. Maintainer @escamoteur项目地址:https://gitcode.com/gh_mirrors/rx/rx_command

项目介绍

RxCommand 是一个基于 Reactive Extensions (Rx) 的事件处理器抽象层,专为 Flutter 应用设计。它借鉴了 ReactiveUI 框架中的 ReactiveCommand,并大量使用了 RxDart 包。RxCommand 的主要目标是简化 Flutter 应用中的事件处理逻辑,使其更加响应式和易于维护。

项目技术分析

核心功能

  • 事件处理抽象RxCommand 封装了事件处理函数,并通过 execute 方法或直接绑定到 Widget 的事件处理器来执行。
  • 流式接口:处理函数的结果通过流接口发布,支持同步和异步操作。
  • 状态管理:提供 isExecutingcanExecutethrownExceptions 等流,用于管理命令的执行状态和异常处理。
  • 可执行性控制:通过 canExecute 流,可以根据其他状态变化动态启用或禁用命令。

版本更新

  • V5.0 重大变更RxCommand 不再使用 Observables,而是使用 Dart 原生的 Streams,以适应最新的 RxDart 版本。
  • V3.0 变更CommandResult 对象现在通过 .results 属性发布,而纯结果则直接通过 RxCommand 本身发布。

项目及技术应用场景

应用场景

  • 表单处理:在表单输入变化时,使用 RxCommand 处理数据验证和提交。
  • 异步操作:在执行网络请求、文件读写等异步操作时,使用 RxCommand 管理状态和结果。
  • UI 状态管理:通过 isExecutingcanExecute 流,动态更新 UI 状态,如显示加载指示器或禁用按钮。

示例代码

final textChangedCommand = RxCommand.createSync((s) => s);

textChangedCommand
  .debounce(Duration(milliseconds: 500))
  .listen((filterText) {
    updateWeatherCommand.execute(filterText);
  });

项目特点

响应式编程

RxCommand 充分利用了 RxDart 的强大功能,使 Flutter 应用的事件处理更加响应式。通过流式接口,开发者可以轻松处理复杂的异步操作和状态管理。

灵活的事件处理

RxCommand 提供了多种工厂方法,支持同步和异步的事件处理函数。开发者可以根据需求选择合适的处理方式,简化代码逻辑。

状态管理与错误处理

通过 isExecutingcanExecutethrownExceptions 等流,RxCommand 提供了全面的状态管理和错误处理机制。开发者可以轻松监控命令的执行状态,并在发生错误时进行相应的处理。

易于集成

RxCommand 可以直接绑定到 Flutter Widget 的事件处理器,并通过 StreamBuilderStatefulWidget 处理结果。这使得 RxCommand 在 Flutter 应用中易于集成和使用。

总结

RxCommand 是一个强大的工具,适用于任何希望在 Flutter 应用中实现响应式事件处理的开发者。它不仅简化了事件处理逻辑,还提供了丰富的状态管理和错误处理功能。无论你是初学者还是经验丰富的开发者,RxCommand 都能帮助你构建更加健壮和高效的 Flutter 应用。

立即尝试 RxCommand,让你的 Flutter 应用更加响应式!

rx_commandRxCommand - Reactive event handler wrapper class inspired by ReactiveUI. Maintainer @escamoteur项目地址:https://gitcode.com/gh_mirrors/rx/rx_command

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苗圣禹Peter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值