Deforming-NeRF 项目使用教程

Deforming-NeRF 项目使用教程

deforming-nerf Code for "Deforming Radiance Fields with Cages", ECCV 2022. deforming-nerf 项目地址: https://gitcode.com/gh_mirrors/de/deforming-nerf

1. 项目介绍

Deforming-NeRF 是一个基于 NeRF(Neural Radiance Fields)的开源项目,旨在通过使用“Cages”技术对辐射场进行变形。该项目由 Tianhan Xu 和 Tatsuya Harada 开发,并在 ECCV 2022 上发表。Deforming-NeRF 允许用户对 3D 场景进行动态变形,并生成相应的渲染图像。

2. 项目快速启动

2.1 环境设置

首先,创建一个 Conda 环境并激活它:

conda env create -f environment.yml
conda activate deforming-nerf

然后安装所有依赖项:

pip install -r requirements.txt

2.2 数据准备

下载所需的 datasets 并将其放置在 /data/ 目录下:

2.3 下载预训练模型和预处理 cages

从 Google Drive 下载优化的 Plenoxels 模型和预处理的 cages,并将其放置在 /opt/ckpt/ 目录下。

2.4 渲染示例

以 NeRF-synthetic 数据集中的 Lego 为例,运行以下命令:

# 渲染一个静态变形的场景
python render_imgs_deform.py ckpt/nerf_lego/ckpt.npz /data/nerf_synthetic/lego/ -c configs/syn.json

# 渲染基于 cage 插值的动画
python render_imgs_deform.py ckpt/nerf_lego/ckpt.npz /data/nerf_synthetic/lego/ -c configs/syn.json --interpolate --cam_id 64

# 渲染原始场景以进行比较
python render_imgs_deform.py ckpt/nerf_lego/ckpt.npz /data/nerf_synthetic/lego/ -c configs/syn.json --render_orig

3. 应用案例和最佳实践

3.1 应用案例

Deforming-NeRF 可以应用于以下场景:

  • 动画制作:通过变形技术生成动态的 3D 动画。
  • 虚拟现实:在 VR 环境中实时变形 3D 对象。
  • 医学成像:对医学图像进行变形分析。

3.2 最佳实践

  • 优化模型:如果遇到安装问题,建议参考 Plenoxels 的原始仓库。
  • 自定义数据集:请参考 MANUAL.md 文件中的提示,了解如何从头开始优化 Plenoxel 模型、从优化后的 Plenoxel 模型中提取网格以及生成 cage。

4. 典型生态项目

  • Plenoxels:Deforming-NeRF 的基础项目,提供了 NeRF 的优化实现。
  • NSVF:用于处理合成数据集的工具,与 Deforming-NeRF 兼容。
  • IDR:用于处理 DTU 数据集的工具,提供了预处理的数据集。

通过这些生态项目,Deforming-NeRF 能够更好地与其他工具和数据集集成,提供更丰富的功能和应用场景。

deforming-nerf Code for "Deforming Radiance Fields with Cages", ECCV 2022. deforming-nerf 项目地址: https://gitcode.com/gh_mirrors/de/deforming-nerf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴麒琰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值