Deforming-NeRF 项目使用教程
1. 项目介绍
Deforming-NeRF 是一个基于 NeRF(Neural Radiance Fields)的开源项目,旨在通过使用“Cages”技术对辐射场进行变形。该项目由 Tianhan Xu 和 Tatsuya Harada 开发,并在 ECCV 2022 上发表。Deforming-NeRF 允许用户对 3D 场景进行动态变形,并生成相应的渲染图像。
2. 项目快速启动
2.1 环境设置
首先,创建一个 Conda 环境并激活它:
conda env create -f environment.yml
conda activate deforming-nerf
然后安装所有依赖项:
pip install -r requirements.txt
2.2 数据准备
下载所需的 datasets 并将其放置在 /data/
目录下:
2.3 下载预训练模型和预处理 cages
从 Google Drive 下载优化的 Plenoxels 模型和预处理的 cages,并将其放置在 /opt/ckpt/
目录下。
2.4 渲染示例
以 NeRF-synthetic 数据集中的 Lego 为例,运行以下命令:
# 渲染一个静态变形的场景
python render_imgs_deform.py ckpt/nerf_lego/ckpt.npz /data/nerf_synthetic/lego/ -c configs/syn.json
# 渲染基于 cage 插值的动画
python render_imgs_deform.py ckpt/nerf_lego/ckpt.npz /data/nerf_synthetic/lego/ -c configs/syn.json --interpolate --cam_id 64
# 渲染原始场景以进行比较
python render_imgs_deform.py ckpt/nerf_lego/ckpt.npz /data/nerf_synthetic/lego/ -c configs/syn.json --render_orig
3. 应用案例和最佳实践
3.1 应用案例
Deforming-NeRF 可以应用于以下场景:
- 动画制作:通过变形技术生成动态的 3D 动画。
- 虚拟现实:在 VR 环境中实时变形 3D 对象。
- 医学成像:对医学图像进行变形分析。
3.2 最佳实践
- 优化模型:如果遇到安装问题,建议参考 Plenoxels 的原始仓库。
- 自定义数据集:请参考
MANUAL.md
文件中的提示,了解如何从头开始优化 Plenoxel 模型、从优化后的 Plenoxel 模型中提取网格以及生成 cage。
4. 典型生态项目
- Plenoxels:Deforming-NeRF 的基础项目,提供了 NeRF 的优化实现。
- NSVF:用于处理合成数据集的工具,与 Deforming-NeRF 兼容。
- IDR:用于处理 DTU 数据集的工具,提供了预处理的数据集。
通过这些生态项目,Deforming-NeRF 能够更好地与其他工具和数据集集成,提供更丰富的功能和应用场景。