MG-LLaVA项目使用教程

MG-LLaVA项目使用教程

MG-LLaVA Official repository for paper MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning(https://arxiv.org/abs/2406.17770). MG-LLaVA 项目地址: https://gitcode.com/gh_mirrors/mg/MG-LLaVA

1. 项目目录结构及介绍

MG-LLaVA项目的目录结构如下:

MG-LLaVA/
├── .github/              # GitHub相关配置文件
├── docs/                 # 项目文档
├── examples/             # 示例数据
├── images/               # 项目图片
├── mg_llava/             # MG-LLaVA核心代码
├── requirements/         # 项目依赖
├── script/               # 脚本文件,包括训练和推理等
├── xtuner/               # XTuner相关代码
├── .gitignore            # Git忽略文件
├── .owners.yml           # 项目拥有者信息
├── .pre-commit-config-zh-cn.yaml  # pre-commit配置文件(中文)
├── .pre-commit-config.yaml        # pre-commit配置文件
├── LICENSE               # 开源协议文件
├── README.md             # 项目说明文件
├── dataset_prepare.md    # 数据准备说明
├── evaluation.md         # 模型评估说明
├── requirements.txt      # Python依赖文件
├── setup.cfg             # 设置配置文件
├── setup.py              # 设置文件
  • .github/:包含GitHub Actions工作流等配置。
  • docs/:存放项目文档。
  • examples/:包含示例图片等数据。
  • images/:存放项目相关的图片文件。
  • mg_llava/:包含MG-LLaVA模型的主要代码。
  • requirements/:存放Python依赖包。
  • script/:脚本文件夹,用于运行模型的训练、推理等。
  • xtuner/:XTuner框架相关代码。
  • .gitignore:定义Git应该忽略的文件。
  • .owners.yml:定义项目维护者的信息。
  • .pre-commit-config-zh-cn.yaml.pre-commit-config.yaml:配置pre-commit工具,用于代码格式化等。
  • LICENSE:Apache-2.0协议的许可证文件。
  • README.md:项目的基本介绍和说明。
  • dataset_prepare.md:详细说明数据准备的过程。
  • evaluation.md:详细说明模型评估的方法和指标。
  • requirements.txt:项目依赖的Python包列表。
  • setup.cfgsetup.py:用于打包和分发Python包的配置文件。

2. 项目的启动文件介绍

项目的启动主要是通过script/目录下的脚本文件进行的。以下是一些主要的启动脚本:

  • train_vicuna7B.sh:整个训练过程的启动脚本,包括预训练、微调和评估。
  • train_pretrain.sh:启动预训练过程的脚本。
  • train_sft.sh:启动微调过程的脚本。

根据不同的训练阶段和需求,可以选择不同的脚本来启动项目。

3. 项目的配置文件介绍

项目的配置文件主要集中在mg_llava/config/目录下。以下是一些重要的配置文件:

  • fuse_vicuna7b_clip_L_14_336_pretrain_padding.py:预训练阶段的配置文件。
  • fuse_vicuna7b_clip_L_14_336_sft_padding.py:微调阶段的配置文件。

这些配置文件包含了训练过程中所需的各种参数设置,例如模型路径、数据路径、训练参数等。用户需要根据自己的实际情况对这些配置文件进行相应的修改。

MG-LLaVA Official repository for paper MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning(https://arxiv.org/abs/2406.17770). MG-LLaVA 项目地址: https://gitcode.com/gh_mirrors/mg/MG-LLaVA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴麒琰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值