DocLayout-YOLO 项目使用教程
1. 项目的目录结构及介绍
DocLayout-YOLO 项目目录结构如下:
DocLayout-YOLO/
├── assets/ # 存放示例图片和文档
├── doclayout_yolo/ # 项目主代码文件夹
│ ├── __init__.py
│ ├── demo.py # 演示脚本,用于模型预测和图像标注
│ ├── format_docsynth300k.py # 将 DocSynth300K 数据集格式化为 YOLO 格式
│ ├── pyproject.toml # 项目配置文件
│ ├── README-zh_CN.md # 中文项目说明文档
│ ├── README.md # 英文项目说明文档
│ ├── train.py # 训练脚本
│ ├── val.py # 验证脚本
│ └── ...
├── .gitignore # 指定 Git 忽略的文件和目录
├── LICENSE # 项目许可证文件
├── requirements.txt # 项目依赖文件
└── ...
主要目录和文件说明:
assets/
:包含项目的示例图片和文档。doclayout_yolo/
:包含项目的核心代码。demo.py
:用于演示如何使用模型进行图像预测和标注。format_docsynth300k.py
:用于将 DocSynth300K 数据集转换为 YOLO 格式。pyproject.toml
:项目配置文件,包含项目信息和依赖。train.py
、val.py
:训练和验证脚本。
2. 项目的启动文件介绍
启动文件主要是 demo.py
,它演示了如何使用 DocLayout-YOLO 进行图像预测和标注。
以下是 demo.py
的基本使用方法:
# 使用脚本进行预测
python demo.py --model path/to/model --image-path path/to/image
参数说明:
--model
:指定预训练模型的路径。--image-path
:指定待预测图像的路径。
3. 项目的配置文件介绍
项目的配置文件是 pyproject.toml
,它包含了项目的元数据和依赖信息。
以下是一个示例 pyproject.toml
文件的内容:
[tool.poetry]
name = "DocLayout-YOLO"
version = "0.1.0"
description = "A real-time and robust layout detection model for diverse documents."
authors = ["Zhiyuan Zhao <zhaozy1994@gmail.com>"]
[tool.poetry.dependencies]
python = "^3.10"
[tool.poetry.dev-dependencies]
pytest = "^6.2"
配置文件内容说明:
[tool.poetry]
:包含项目的基本信息,如项目名称、版本和描述。[tool.poetry.dependencies]
:指定项目运行所需的依赖,这里是 Python 3.10。[tool.poetry.dev-dependencies]
:指定项目开发过程中所需的依赖,这里是为了测试。
以上就是 DocLayout-YOLO 项目的使用教程,包括目录结构介绍、启动文件介绍和配置文件介绍。希望对您使用该项目有所帮助。