JetBot碰撞避免项目:数据收集完全指南

JetBot碰撞避免项目:数据收集完全指南

jetbot An educational AI robot based on NVIDIA Jetson Nano. jetbot 项目地址: https://gitcode.com/gh_mirrors/je/jetbot

项目背景与目标

JetBot作为一款基于NVIDIA Jetson Nano的智能机器人平台,其核心能力之一就是实现自主避障功能。本教程将详细介绍如何使用JetBot进行碰撞避免训练数据的收集工作,这是构建高效避障系统的第一步。

技术原理概述

碰撞避免系统的核心思想是建立一个"安全气泡"概念——即在机器人周围划定一个虚拟的安全区域。当机器人旋转时,这个区域内的任何物体都不会与之发生碰撞。通过深度学习模型,我们可以教会JetBot识别何时这个安全区域被侵犯(blocked状态)以及何时可以安全前进(free状态)。

数据收集环境搭建

1. 摄像头初始化

首先需要初始化JetBot的摄像头模块,设置分辨率为224x224像素,这是后续神经网络模型的标准输入尺寸:

from jetbot import Camera, bgr8_to_jpeg
import ipywidgets.widgets as widgets

camera = Camera.instance(width=224, height=224)
image = widgets.Image(format='jpeg', width=224, height=224)

2. 创建数据存储目录

为两类数据分别创建存储目录:

  • dataset/blocked:存储安全区域被侵犯的场景图像
  • dataset/free:存储可以安全移动的场景图像
import os

blocked_dir = 'dataset/blocked'
free_dir = 'dataset/free'

try:
    os.makedirs(free_dir)
    os.makedirs(blocked_dir)
except FileExistsError:
    print('目录已存在,无需重复创建')

数据采集界面设计

1. 控制按钮与计数器

创建直观的交互界面,包含:

  • 两个操作按钮(添加free/blocked样本)
  • 实时显示已收集样本数量的计数器
button_layout = widgets.Layout(width='128px', height='64px')
free_button = widgets.Button(description='添加安全样本', button_style='success', layout=button_layout)
blocked_button = widgets.Button(description='添加障碍样本', button_style='danger', layout=button_layout)

2. 图像保存功能实现

为按钮添加回调函数,实现图像保存功能。使用UUID确保文件名唯一性:

from uuid import uuid1

def save_snapshot(directory):
    image_path = os.path.join(directory, str(uuid1()) + '.jpg')
    with open(image_path, 'wb') as f:
        f.write(image.value)

数据采集最佳实践

1. 采集策略

  • blocked场景:将JetBot放置在距离障碍物约10-15cm处,确保如果机器人旋转会碰到障碍物
  • free场景:确保机器人前方有足够的空间可以安全移动

2. 数据多样性建议

为构建鲁棒的模型,建议采集:

  • 不同角度的障碍物(正面、侧面、斜向)
  • 多种光照条件(强光、弱光、背光等)
  • 各类障碍物类型(墙壁、家具、玻璃等)
  • 不同地面材质(木地板、瓷砖、地毯等)

3. 数据量建议

每类样本至少收集100张以上,且保持两类样本数量大致平衡。

数据采集流程

  1. 摆放JetBot到目标场景
  2. 观察实时摄像头画面
  3. 根据场景类型点击相应按钮
  4. 重复上述步骤,收集足够多样的样本

数据打包与转移

完成采集后,将数据打包为zip文件以便传输到训练机器:

!zip -r -q dataset.zip dataset

后续步骤

  1. 将dataset.zip文件下载到本地
  2. 上传到配备GPU的训练机器
  3. 使用collision_avoidance/train_model.ipynb进行模型训练
  4. 将训练好的模型部署回JetBot

注意事项

  1. JetBot旋转中心位于两轮中间,而非底盘中心,采集数据时需考虑此特性
  2. 当不确定是否为安全距离时,宁可保守判断为blocked状态
  3. 可通过Jupyter Lab的"Create New View for Output"功能将控件分离到新窗口,方便操作

通过本教程的系统性数据采集,您将为JetBot构建高质量的碰撞避免训练数据集,为后续模型训练打下坚实基础。

jetbot An educational AI robot based on NVIDIA Jetson Nano. jetbot 项目地址: https://gitcode.com/gh_mirrors/je/jetbot

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牧宁李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值