JetBot碰撞避免项目:数据收集完全指南
项目背景与目标
JetBot作为一款基于NVIDIA Jetson Nano的智能机器人平台,其核心能力之一就是实现自主避障功能。本教程将详细介绍如何使用JetBot进行碰撞避免训练数据的收集工作,这是构建高效避障系统的第一步。
技术原理概述
碰撞避免系统的核心思想是建立一个"安全气泡"概念——即在机器人周围划定一个虚拟的安全区域。当机器人旋转时,这个区域内的任何物体都不会与之发生碰撞。通过深度学习模型,我们可以教会JetBot识别何时这个安全区域被侵犯(blocked状态)以及何时可以安全前进(free状态)。
数据收集环境搭建
1. 摄像头初始化
首先需要初始化JetBot的摄像头模块,设置分辨率为224x224像素,这是后续神经网络模型的标准输入尺寸:
from jetbot import Camera, bgr8_to_jpeg
import ipywidgets.widgets as widgets
camera = Camera.instance(width=224, height=224)
image = widgets.Image(format='jpeg', width=224, height=224)
2. 创建数据存储目录
为两类数据分别创建存储目录:
dataset/blocked
:存储安全区域被侵犯的场景图像dataset/free
:存储可以安全移动的场景图像
import os
blocked_dir = 'dataset/blocked'
free_dir = 'dataset/free'
try:
os.makedirs(free_dir)
os.makedirs(blocked_dir)
except FileExistsError:
print('目录已存在,无需重复创建')
数据采集界面设计
1. 控制按钮与计数器
创建直观的交互界面,包含:
- 两个操作按钮(添加free/blocked样本)
- 实时显示已收集样本数量的计数器
button_layout = widgets.Layout(width='128px', height='64px')
free_button = widgets.Button(description='添加安全样本', button_style='success', layout=button_layout)
blocked_button = widgets.Button(description='添加障碍样本', button_style='danger', layout=button_layout)
2. 图像保存功能实现
为按钮添加回调函数,实现图像保存功能。使用UUID确保文件名唯一性:
from uuid import uuid1
def save_snapshot(directory):
image_path = os.path.join(directory, str(uuid1()) + '.jpg')
with open(image_path, 'wb') as f:
f.write(image.value)
数据采集最佳实践
1. 采集策略
- blocked场景:将JetBot放置在距离障碍物约10-15cm处,确保如果机器人旋转会碰到障碍物
- free场景:确保机器人前方有足够的空间可以安全移动
2. 数据多样性建议
为构建鲁棒的模型,建议采集:
- 不同角度的障碍物(正面、侧面、斜向)
- 多种光照条件(强光、弱光、背光等)
- 各类障碍物类型(墙壁、家具、玻璃等)
- 不同地面材质(木地板、瓷砖、地毯等)
3. 数据量建议
每类样本至少收集100张以上,且保持两类样本数量大致平衡。
数据采集流程
- 摆放JetBot到目标场景
- 观察实时摄像头画面
- 根据场景类型点击相应按钮
- 重复上述步骤,收集足够多样的样本
数据打包与转移
完成采集后,将数据打包为zip文件以便传输到训练机器:
!zip -r -q dataset.zip dataset
后续步骤
- 将dataset.zip文件下载到本地
- 上传到配备GPU的训练机器
- 使用
collision_avoidance/train_model.ipynb
进行模型训练 - 将训练好的模型部署回JetBot
注意事项
- JetBot旋转中心位于两轮中间,而非底盘中心,采集数据时需考虑此特性
- 当不确定是否为安全距离时,宁可保守判断为blocked状态
- 可通过Jupyter Lab的"Create New View for Output"功能将控件分离到新窗口,方便操作
通过本教程的系统性数据采集,您将为JetBot构建高质量的碰撞避免训练数据集,为后续模型训练打下坚实基础。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考