RevIN 项目使用教程

RevIN 项目使用教程

RevINRevIN: Reversible Instance Normalization For Accurate Time-series Forecasting Against Distribution Shift项目地址:https://gitcode.com/gh_mirrors/re/RevIN

1. 项目的目录结构及介绍

RevIN/
├── baselines/
│   ├── informer/
│   └── scinet/
├── RevIN/
│   ├── __init__.py
│   └── revin.py
├── experiments/
│   ├── config.json
│   └── run_experiment.py
├── README.md
├── requirements.txt
└── setup.py

目录结构介绍

  • baselines/: 包含 Informer 和 SCINet 两个基准模型的代码。
    • informer/: Informer 模型的代码。
    • scinet/: SCINet 模型的代码。
  • RevIN/: 包含 RevIN 模型的核心代码。
    • init.py: 初始化文件。
    • revin.py: RevIN 模型的实现代码。
  • experiments/: 包含实验配置和运行脚本。
    • config.json: 实验配置文件。
    • run_experiment.py: 运行实验的脚本。
  • README.md: 项目介绍和使用说明。
  • requirements.txt: 项目依赖的 Python 包列表。
  • setup.py: 项目安装脚本。

2. 项目的启动文件介绍

项目的启动文件是 experiments/run_experiment.py。该文件用于启动实验,加载配置并执行模型训练和评估。

启动文件介绍

  • run_experiment.py:
    • 加载 config.json 中的配置。
    • 初始化模型和数据集。
    • 执行模型训练和评估。

3. 项目的配置文件介绍

项目的配置文件是 experiments/config.json。该文件包含了实验的所有配置参数,如模型参数、数据集路径、训练参数等。

配置文件介绍

  • config.json:
    • model_params: 模型的超参数配置。
    • data_params: 数据集的路径和预处理参数。
    • train_params: 训练过程的参数配置,如学习率、批次大小等。
    • eval_params: 评估过程的参数配置。

通过修改 config.json 文件,可以调整实验的各项参数,以适应不同的需求和环境。

RevINRevIN: Reversible Instance Normalization For Accurate Time-series Forecasting Against Distribution Shift项目地址:https://gitcode.com/gh_mirrors/re/RevIN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贡沫苏Truman

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值