MMTracking项目自定义训练运行时配置详解
引言
在计算机视觉任务中,特别是视频目标跟踪领域,训练过程的配置对模型性能有着至关重要的影响。本文将深入探讨如何在MMTracking项目中自定义训练运行时配置,包括优化器设置、训练调度器、工作流程以及钩子机制等核心内容。
优化器配置详解
内置优化器使用
MMTracking支持PyTorch原生所有优化器,配置方式简单直观。例如配置Adam优化器:
optimizer = dict(
type='Adam', # 优化器类型
lr=0.0003, # 基础学习率
weight_decay=0.0001 # 权重衰减系数
)
关键参数说明:
type
: 指定优化器类型,如SGD、Adam等lr
: 基础学习率,影响模型参数更新幅度weight_decay
: L2正则化系数,防止过拟合
自定义优化器实现
当内置优化器无法满足需求时,可以自定义优化器:
- 定义优化器类:创建新文件
mmtrack/core/optimizer/my_optimizer.py
from torch.optim import Optimizer
from mmcv.runner.optimizer import OPTIMIZERS
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
def __init__(self, params, a, b, c, **kwargs):
# 实现自定义优化逻辑
super().__init__(params, defaults)
-
注册优化器:通过以下方式之一
- 在
mmtrack/core/optimizer/__init__.py
中导入 - 使用config中的
custom_imports
动态导入
- 在
-
配置使用:
optimizer = dict(type='MyOptimizer', a=1.0, b=0.5, c=0.1)
高级优化技巧
- 梯度裁剪:防止梯度爆炸
optimizer_config = dict(
grad_clip=dict(max_norm=35, norm_type=2)
)
- 动量调度:配合学习率调度使用
momentum_config = dict(
policy='cyclic',
target_ratio=(0.85/0.95, 1),
cyclic_times=1,
step_ratio_up=0.4
)
学习率调度策略
MMTracking支持多种学习率调整策略:
Poly策略
lr_config = dict(
policy='poly', # 策略类型
power=0.9, # 多项式衰减指数
min_lr=1e-4, # 最小学习率
by_epoch=False # 按迭代次数而非epoch调整
)
Cosine退火策略
lr_config = dict(
policy='CosineAnnealing',
warmup='linear', # 预热策略
warmup_iters=1000, # 预热迭代次数
warmup_ratio=1.0/10, # 初始学习率比例
min_lr_ratio=1e-5 # 最小学习率比例
)
训练工作流配置
工作流定义了训练过程中的阶段顺序:
workflow = [('train', 1), ('val', 1)]
('train', N)
: 训练N个epoch('val', M)
: 验证M次
注意事项:
- 验证阶段不更新模型参数
- 总epoch数由
total_epochs
控制 - 验证工作流影响的是验证钩子的调用时机
钩子(Hook)机制
自定义钩子实现
- 定义钩子类:
from mmcv.runner import HOOKS, Hook
@HOOKS.register_module()
class CustomHook(Hook):
def __init__(self, param1, param2):
self.param1 = param1
self.param2 = param2
def before_epoch(self, runner):
# 每个epoch开始前的操作
pass
- 注册与使用:
custom_hooks = [
dict(type='CustomHook', param1=value1, param2=value2)
]
内置钩子配置
- 模型保存钩子:
checkpoint_config = dict(
interval=1, # 保存间隔(epoch)
max_keep_ckpts=3, # 最大保存数量
save_optimizer=True # 是否保存优化器状态
)
- 日志钩子:
log_config = dict(
interval=50, # 日志记录间隔(iter)
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
]
)
- 评估钩子:
evaluation = dict(
interval=1, # 评估间隔(epoch)
metric='bbox', # 评估指标
save_best='auto' # 自动保存最佳模型
)
最佳实践建议
- 学习率设置:根据batch size线性调整学习率
- 梯度裁剪:特别是对于RNN类结构建议启用
- 混合精度训练:通过配置
fp16
参数启用 - 日志监控:建议同时使用Tensorboard和文本日志
- 模型保存:设置合理的保存间隔和最大保存数量
通过灵活组合上述配置选项,可以针对不同的视频目标跟踪任务和硬件环境,定制出最优的训练运行时配置,从而最大化模型性能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考