推荐项目:Transformers for Natural Language Processing and Computer Vision
项目地址:https://gitcode.com/gh_mirrors/tr/Transformers-for-NLP-and-Computer-Vision-3rd-Edition
项目介绍
《Transformers for Natural Language Processing and Computer Vision: Take Generative AI and LLMs to the next level with Hugging Face, Google Vertex AI, ChatGPT, GPT-4V, and DALL-E 3》是由Denis Rothman所著,并由Packt出版社出版的书籍的代码仓库。这本书的第三版深入探讨了大型语言模型(LLM)的架构、应用,以及用于自然语言处理(NLP)和计算机视觉(CV)的各种平台,如Hugging Face、OpenAI和Google Vertex AI。
该项目仓库持续更新和升级,提供了丰富的笔记本示例,涵盖了最新的模型和平台发布,如OpenAI的GPT-4o和GPT-4o-mini模型。用户可以通过标记🐬探索新的奖励笔记本,如Midjourney的API、Google Vertex AI Gemini的API,以及通过异步批量API调用提升OpenAI GPT模型的速度。此外,标记🎏用于探索现有笔记本中的最新模型或平台发布,而标记🛠则用于运行带有新依赖版本和平台API约束的现有笔记本。
项目技术分析
该项目涵盖了以下关键技术:
- 大型语言模型(LLM):深入探讨LLM的架构和应用,包括预训练和微调技术。
- 多平台支持:涵盖Hugging Face、OpenAI和Google Vertex AI等主流平台的使用方法。
- 分词器:介绍不同分词器及其在语言数据预处理中的最佳实践。
- 可解释性工具:使用BertViz、LIME和SHAP等工具可视化Transformer模型的活动,提供更深入的洞察。
- 跨平台链式模型:创建和实现如HuggingGPT的跨平台链式模型。
- 视觉Transformer:深入探讨CLIP、DALL-E 2、DALL-E 3和GPT-4V等视觉Transformer模型。
项目及技术应用场景
该项目适用于以下应用场景:
- 自然语言处理(NLP):构建文本分类、摘要、翻译等应用。
- 计算机视觉(CV):开发图像和视频到文本的分类器。
- 多模态应用:结合文本和图像数据,构建多模态模型。
- AI代理复制:学习和实现AI代理的复制技术。
- 教育与研究:作为学习和研究Transformer模型及其应用的教材。
项目特点
- 持续更新:项目仓库持续更新,确保内容的时效性和前沿性。
- 丰富的笔记本示例:提供大量可运行的笔记本示例,支持Colab、Kaggle、Gradient和StudioLab等多个平台。
- 全面覆盖:从基础架构到高级应用,全面覆盖Transformer模型的相关知识。
- 多平台兼容:支持Hugging Face、OpenAI和Google Vertex AI等多个主流平台。
- 实用工具:提供可解释性工具和跨平台链式模型的实现,增强模型的实用性和可理解性。
结语
无论你是AI领域的初学者还是资深开发者,《Transformers for Natural Language Processing and Computer Vision》项目都能为你提供宝贵的资源和指导。通过这个项目,你将能够深入了解和掌握最新的Transformer技术,并将其应用于实际项目中。立即访问项目仓库,开启你的AI探索之旅吧!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考