TopMost:一站式主题建模工具包

TopMost:一站式主题建模工具包

TopMost Towards the TopMost: A Topic Modeling System Toolkit TopMost 项目地址: https://gitcode.com/gh_mirrors/to/TopMost

项目介绍

TopMost 是一个全面的开源主题建模工具包,旨在为用户提供从数据集、预处理、模型训练到评估的完整生命周期支持。无论您是从事基础主题建模、动态主题建模、层次主题建模还是跨语言主题建模,TopMost 都能满足您的需求。该项目不仅涵盖了多种流行的主题建模场景,还提供了丰富的模型、评估指标和数据集,帮助用户轻松实现高效的主题建模任务。

项目技术分析

TopMost 的技术架构设计精良,支持多种主题建模场景,包括:

  • 基础主题建模:涵盖了 LDA、NMF、ProdLDA、DecTM 等多种经典和现代主题模型。
  • 层次主题建模:支持 HDP、SawETM、HyperMiner 等模型,适用于需要多层次主题结构的应用场景。
  • 动态主题建模:提供了 DTM、DETM、CFDTM 等模型,能够捕捉主题随时间变化的趋势。
  • 跨语言主题建模:支持 NMTM、InfoCTM 等模型,适用于多语言文本的主题建模任务。

每个场景都配备了相应的评估指标,如主题一致性(TC)、主题多样性(TD)、聚类和分类等,确保模型的性能得到全面评估。

项目及技术应用场景

TopMost 的应用场景广泛,适用于以下领域:

  • 文本挖掘:在新闻、社交媒体、学术论文等文本数据中提取主题,帮助用户快速理解文本内容。
  • 信息检索:通过主题模型优化搜索结果,提高信息检索的准确性和效率。
  • 推荐系统:利用主题模型分析用户兴趣,提供个性化的内容推荐。
  • 情感分析:结合主题模型和情感分析技术,深入挖掘文本中的情感倾向。

项目特点

  • 全面性:TopMost 提供了从数据预处理到模型训练和评估的完整解决方案,覆盖了多种主题建模场景。
  • 易用性:通过简单的 API 调用,用户可以轻松上手,快速实现主题建模任务。
  • 高性能:支持 GPU 加速,能够处理大规模数据集,提高模型训练效率。
  • 社区支持:项目开源,拥有活跃的社区和丰富的文档资源,用户可以轻松获取帮助和贡献代码。

快速开始

安装 TopMost

pip install topmost

使用示例

以下是一个简单的示例,展示如何使用 TopMost 进行主题建模:

import topmost
from topmost.data import RawDataset
from topmost.preprocessing import Preprocessing
from sklearn.datasets import fetch_20newsgroups

docs = fetch_20newsgroups(subset='all',  remove=('headers', 'footers', 'quotes'))['data']
preprocessing = Preprocessing(vocab_size=10000, stopwords='English')

device = 'cuda' # 或 'cpu'
dataset = RawDataset(docs, preprocessing, device=device)

trainer = topmost.trainers.FASTopicTrainer(dataset, verbose=True)
top_words, doc_topic_dist = trainer.train()

new_docs = [
    "这是一个关于太空的文档,包含太空、卫星、发射、轨道等词汇。",
    "这是一个关于微软Windows的文档,包含windows、文件、dos等词汇。"
]

new_theta = trainer.test(new_docs)
print(new_theta.argmax(1))

总结

TopMost 是一个功能强大且易于使用的主题建模工具包,适用于各种文本分析任务。无论您是研究人员、数据科学家还是开发者,TopMost 都能为您提供高效、灵活的主题建模解决方案。立即尝试 TopMost,开启您的主题建模之旅!

TopMost Towards the TopMost: A Topic Modeling System Toolkit TopMost 项目地址: https://gitcode.com/gh_mirrors/to/TopMost

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏廷章Berta

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值