ViTAE-Transformer RSP 使用教程
1. 项目介绍
ViTAE-Transformer RSP(Remote Sensing Pretraining)是一个针对遥感图像进行预训练的开源项目。该项目旨在解决遥感图像与自然图像之间的领域差异问题,通过在大型遥感数据集上从零开始训练网络,得到适用于遥感任务的预训练网络骨架,包括卷积神经网络(CNN)和视觉变换器(如Swin和ViTAE)。这些预训练网络可以用于多种下游任务,如场景识别、语义分割、目标检测和变化检测。
2. 项目快速启动
环境准备
在开始之前,请确保您的环境中已安装以下依赖:
- Python 3.6 或更高版本
- PyTorch
- Torchvision
- 其他必要的Python库(根据项目要求安装)
克隆项目
使用Git克隆项目仓库:
git clone https://github.com/ViTAE-Transformer/RSP.git
cd RSP
安装依赖
安装项目所需的Python库,根据项目提供的requirements.txt
文件:
pip install -r requirements.txt
数据集准备
根据项目要求准备相应的遥感数据集。项目通常需要将数据集组织成特定的目录结构。
训练模型
以下是一个简单的模型训练命令示例:
python train.py --config_path path_to_config_file
请替换path_to_config_file
为您的配置文件路径,配置文件中包含了训练所需的参数。
模型评估
训练完成后,您可以使用以下命令对模型进行评估:
python eval.py --config_path path_to_config_file --checkpoint_path path_to_checkpoint
请替换path_to_config_file
为您的配置文件路径,path_to_checkpoint
为训练模型保存的检查点路径。
3. 应用案例和最佳实践
- 场景识别:使用预训练的模型在新的遥感图像上进行场景分类任务。
- 语义分割:对遥感图像中的不同地物进行精细的分割。
- 目标检测:在遥感图像中检测特定的目标对象。
- 变化检测:监测遥感图像中两个时间点的变化情况。
4. 典型生态项目
- Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model:进一步推进视觉变换器在遥感基础模型中的应用。
- 其他相关项目:可以探索与遥感图像处理和分析相关的其他开源项目,以丰富您的应用生态。