KoopmanMPC_for_flowcontrol 项目教程

KoopmanMPC_for_flowcontrol 项目教程

KoopmanMPC_for_flowcontrolA data-driven framework for control of nonlinear flows with Koopman Model Predictive Control项目地址:https://gitcode.com/gh_mirrors/ko/KoopmanMPC_for_flowcontrol

项目介绍

KoopmanMPC_for_flowcontrol 是一个数据驱动的框架,用于使用 Koopman 模型预测控制(MPC)来控制非线性流体。该项目基于论文 "A data-driven Koopman model predictive control framework for nonlinear flows" 开发,由 H. Arbabi, M. Korda 和 I. Mezic 提出。该框架通过 Koopman 算子理论,从测量数据中分析和预测非线性动力学,实现闭环反馈控制。

项目快速启动

环境准备

确保你已经安装了 MATLAB,并且具备基本的 MATLAB 编程知识。

克隆项目

首先,克隆项目到本地:

git clone https://github.com/arbabiha/KoopmanMPC_for_flowcontrol.git

运行示例

进入项目目录,运行提供的示例代码:

cd KoopmanMPC_for_flowcontrol
run BurgersExample.m

应用案例和最佳实践

应用案例

  1. Burgers 方程控制:通过 Koopman MPC 框架控制 Burgers 方程的非线性流体动力学。
  2. Cavity 流控制:应用 Koopman MPC 框架控制 Cavity 流中的非线性流动。

最佳实践

  • 数据驱动:利用测量数据进行模型训练和预测,无需显式物理模型。
  • 闭环控制:实现完全数据驱动的闭环反馈控制,提高控制系统的鲁棒性和性能。

典型生态项目

  • MATLAB 社区:参与 MATLAB 社区讨论,获取更多关于 Koopman MPC 的应用和优化建议。
  • arXiv 论文:查阅相关 arXiv 论文,了解 Koopman 算子理论和 MPC 的最新研究进展。

通过以上步骤,你可以快速启动并应用 KoopmanMPC_for_flowcontrol 项目,实现非线性流体的数据驱动控制。

KoopmanMPC_for_flowcontrolA data-driven framework for control of nonlinear flows with Koopman Model Predictive Control项目地址:https://gitcode.com/gh_mirrors/ko/KoopmanMPC_for_flowcontrol

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沈韬淼Beryl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值