Chaplin 实时无声语音识别工具使用指南

Chaplin 实时无声语音识别工具使用指南

chaplin A real-time silent speech recognition tool. chaplin 项目地址: https://gitcode.com/gh_mirrors/chapl/chaplin

1. 项目介绍

Chaplin 是一个实时无声语音识别(VSR)工具,它能够实时读取用户的嘴唇动作并将口型转换为文字。该工具完全在本地运行,依赖于在 Lip Reading Sentences 3(LRS3)数据集上训练的模型,作为 Auto-AVSR 项目的一部分。

2. 项目快速启动

克隆项目仓库

首先,你需要克隆项目仓库到本地环境:

git clone https://github.com/amanvirparhar/chaplin.git
cd chaplin

下载模型组件

接下来,下载所需的模型组件 LRS3_V_WER19.1 和 lm_en_subword。

解压并放置模型组件

将下载的压缩包解压,并将它们放置到相应的目录中:

chaplin/
├── benchmarks/
├── LRS3/
├── language_models/
├── lm_en_subword/
├── models/
├── LRS3_V_WER19.1/
├── ...

安装依赖

安装 ollama 并拉取 llama3.2 模型。安装 uv 工具。

运行程序

运行以下命令启动程序:

sudo uv run --with-requirements requirements.txt --python 3.12 main.py config_filename=./configs/LRS3_V_WER19.1.ini detector=mediapipe

当摄像头馈送显示后,你可以按以下方式开始“录制”:

  • 在 Mac 上按 option
  • 在 Windows/Linux 上按 alt

开始口型单词时,程序将在你的光标位置显示文字。再次按下相同的键停止录制。

要优雅地退出程序,请将焦点放在显示摄像头馈送的窗口上,然后按 q 键。

3. 应用案例和最佳实践

在这一部分,你可以探索如何在实际应用中使用 Chaplin。例如,你可以将其集成到辅助技术中,帮助听障人士或在不适合发声的环境中提供无声通信方式。

  • 辅助沟通:为听障人士提供一种新的沟通方式。
  • 隐蔽通信:在需要保持静默的环境中,如图书馆或剧院,实现无声交流。

4. 典型生态项目

Chaplin 可以与以下类型的项目集成,以扩展其功能和适用性:

  • 自然语言处理(NLP)框架:集成到 NLP 框架中,以提高语音识别的准确性和效率。
  • 智能助理:开发智能助理应用,利用 Chaplin 实现实时无声交互。

以上指南将帮助你快速上手并使用 Chaplin,探索其在无声通信领域的无限可能。

chaplin A real-time silent speech recognition tool. chaplin 项目地址: https://gitcode.com/gh_mirrors/chapl/chaplin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴锟轩Denise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值