nycerebro:实时监控纽约市的智能工具

nycerebro:实时监控纽约市的智能工具

nycerebro nycerebro 项目地址: https://gitcode.com/gh_mirrors/ny/nycerebro

项目介绍

nycerebro 是一款基于先进技术的实时监控工具,灵感来源于 X 战警中 Dr. Xavier 的 Cerebro 设备。该项目利用纽约市公开的900多个监控摄像头视频流,通过智能搜索和数据处理,实现对纽约市的实时监控和特定场景的快速检索。

项目技术分析

nycerebro 项目采用了多种前沿技术栈和API,以确保其功能的全面性和高效性。

前端

项目的前端设计采用了简约风格,以搜索为核心。用户可以通过类似谷歌的搜索框输入查询词,快速找到与查询相关的实时画面。

后端

后端处理包括 Python 和 Node.js,两者共同协作完成图像的抓取、Roboflow 的集成以及数据库的更新。Python 脚本不断从纽约市的监控摄像头中获取图像,并通过 Roboflow 的 InferenceHTTPClient 进行处理。

数据库

项目中使用了 Supabase 数据库来存储监控摄像头的元数据和 CLIP 嵌入。这使得搜索结果能够迅速匹配并显示最相关的实时画面。

地图

Mapbox API 被用于渲染一个实时的纽约市热力图,显示与用户查询最相关的区域。

CLIP 嵌入

通过 Roboflow Workflow 生成 CLIP 嵌入,将文本查询与监控摄像头图像相结合,从而实现高效的搜索匹配。

项目及技术应用场景

nycerebro 项目的应用场景广泛,以下是几个典型的使用案例:

  1. 实时交通监控:用户可以输入“traffic”等关键词,实时查看纽约市的交通状况。
  2. 事件监控:对于重大事件或突发事件,如“weird”或“busy”,用户可以快速获取相关区域的实时画面。
  3. 旅游景点监控:输入“times square”等旅游景点的名字,可以实时查看景点的人流和活动情况。
  4. 实时天气监控:用户可以通过输入“bright”等关键词,获取当前天气状况的实时画面。

项目特点

简洁的搜索界面

nycerebro 的主页设计简洁,类似谷歌搜索,使得用户能够快速上手并进行搜索。

智能查询建议

项目提供了快速链接,如“weird”、“busy”、“bright”等,帮助用户激发创意查询。

实时摄像头预览

用户输入的查询通过 Roboflow CLIP 工作流生成嵌入,并与 Supabase 中存储的摄像头嵌入进行匹配,最佳匹配结果以实时图像形式展示。

互动热力图

通过 Mapbox 的热力图,用户可以直观地看到与查询最相关的纽约市区域。

强大的后台处理

项目在等待匹配结果时,显示加载界面,后台同时进行图像处理、嵌入生成和数据库更新等操作。

nycerebro 项目的出现,不仅展示了现代技术在实时监控和数据处理方面的强大能力,也为我们提供了一个全新的视角来观察和了解纽约市。无论是对于城市规划、交通管理,还是日常生活中的实时信息获取,nycerebro 都是一个极具价值的开源项目。如果你对实时监控和智能搜索技术感兴趣,不妨尝试使用 nycerebro,它将给你带来全新的体验。

nycerebro nycerebro 项目地址: https://gitcode.com/gh_mirrors/ny/nycerebro

数据集介绍:多品类农产品目标检测数据集 一、基础信息 数据集名称:多品类农产品目标检测数据集 图片数量: - 训练集:5,744张图片 - 验证集:546张图片 - 测试集:271张图片 总计:6,561张农业场景图片 分类类别: 覆盖33种常见农产品,包括苹果、香蕉、胡萝卜、番茄、西瓜等主流果蔬,以及甜椒、花椰菜、生姜、大豆等特色农作物,完整涵盖从根茎类到叶菜类的多样化需求。 标注格式: YOLO格式标注,包含标准化边界框坐标及类别索引,支持主流目标检测框架直接调用。 数据特性: 农业场景实拍图像,包含自然光照条件下的单目标与多目标检测场景,适用于真实农业环境下的模型训练。 二、适用场景 农业自动化分拣系统: 为果蔬分拣机器人提供视觉识别能力,支持多品类农产品同步检测,提升自动化产线分拣效率。 智能零售库存管理: 赋能商超智能货架系统,实现农产品自动识别与库存统计,优化生鲜商品周转管理。 精准农业研究: 支持农作物生长监测AI系统开发,通过田间图像实时检测作物分布与成熟度。 农业教育实训: 可作为农业院校AI+农学交叉学科的教学资源,培养智慧农业领域的复合型人才。 三、数据集优势 全品类覆盖: 包含33类全球主流农产品,特别涵盖辣椒、茄子、萝卜等易混淆品种,满足精细化检测需求。 真实场景适配: 数据采集自实际农业环境,包含果蔬堆叠、部分遮挡等复杂场景,确保模型落地实用性。 标注专业化: 采用农业专家参与标注的质量控制机制,边界框精准匹配农产品形态特征。 框架兼容性: 原生支持YOLO系列模型训练,提供.txt标注文件与图像文件的规范目录结构,开箱即用。 应用扩展性强: 除目标检测外,可通过标注转换支持农产品计数、体积估算等衍生应用场景开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴锟轩Denise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值