Tiny-Training 项目使用说明
1. 目录结构及介绍
Tiny-Training 项目目录结构如下:
tiny-training/
├── algorithm/ # 存放算法相关的脚本,如量化感知缩放和稀疏更新等
├── compilation/ # 存放编译相关的代码,包括自动微分和系统支持稀疏更新
├── configs/ # 存放配置文件
├── figures/ # 存放项目相关的图像和图表
├── .gitignore # 指定Git应该忽略的文件和目录
├── .gitmodules # 用于管理子模块
├── LICENSE # 项目的MIT许可证文件
├── README.md # 项目的README文件
├── assets/ # 存放项目资源文件
└── TinyTrainingEngine/ # TinyTrainingEngine的相关代码和教程
algorithm/
:包含实现量化感知缩放和稀疏更新算法的脚本。compilation/
:包含将PyTorch模型编译为中间表示(IR),并在编译时执行自动微分的代码。configs/
:包含项目的配置文件,用于定义项目运行的参数。figures/
:包含项目相关的图像和图表,如演示结果、模型架构图等。.gitignore
:定义了在Git版本控制中应该忽略的文件和目录。.gitmodules
:用于管理项目中可能包含的子模块。LICENSE
:项目的MIT许可证,说明了项目的版权和使用条款。README.md
:项目的自述文件,提供了项目的基本信息和说明。assets/
:包含了项目所需的各种资源文件,如图标、图片等。TinyTrainingEngine/
:包含了TinyTrainingEngine的代码和部署教程。
2. 项目的启动文件介绍
项目的启动文件位于 TinyTrainingEngine/
目录中。主要的启动文件可能包括:
main.py
:项目的主入口文件,用于启动训练或推理流程。train.py
:用于启动模型训练的脚本。infer.py
:用于启动模型推理的脚本。
这些文件通常会调用项目中的其他模块和类,进行模型的加载、配置、训练或推理。
3. 项目的配置文件介绍
项目的配置文件位于 configs/
目录中。配置文件通常是JSON或YAML格式的文件,定义了项目运行时需要的参数,例如:
config.json
:包含了模型训练或推理所需的配置参数,如数据集路径、超参数、模型结构等。
配置文件使得项目更加灵活,用户可以通过修改配置文件来调整项目的行为,而无需修改代码本身。
使用配置文件时,项目会根据配置文件中定义的参数来设置运行时的行为,如:
{
"dataset": "path/to/dataset",
"batch_size": 32,
"learning_rate": 0.001,
"model": "TinyModelV1"
}
用户可以根据需要调整这些参数,以适应不同的训练或推理需求。