深度学习中PCA降维算法的实现与原理分析
概述
主成分分析(PCA)是一种广泛应用于机器学习和数据科学中的降维技术。本文将以Mikoto10032/DeepLearning项目中的PCA实现为例,深入讲解PCA的数学原理和Python实现细节。该实现提供了两种不同的PCA求解方法:特征分解法和期望最大化(EM)算法。
PCA的基本原理
PCA的核心思想是通过线性变换将高维数据投影到低维空间,同时保留数据的主要特征。从概率角度看,PCA可以理解为对潜在变量模型的极大似然估计:
x ~ ∫z N(x|Wz+μ,σ²)N(z|0,I)dz
其中:
- x是观测变量
- z是潜在变量
- W是投影矩阵
- μ是均值向量
- σ²是噪声方差
代码实现解析
初始化与参数设置
class PCA(object):
def __init__(self, n_components):
assert isinstance(n_components, int)
self.n_components = n_components
构造函数接收一个整数参数n_components,指定要保留的主成分数量。这个参数决定了降维后的数据维度。
拟合方法
def fit(self, X, method="eigen", iter_max=100):
self.mean = np.mean(X, axis=0)
getattr(self, method)(X - self.mean, iter_max)
fit方法提供了两种拟合方式:
- "eigen":基于特征分解的传统PCA实现
- "em":基于期望最大化算法的概率PCA实现
特征分解法实现
def eigen(self, X, *arg):
sample_size, n_features = X.shape
if sample_size >= n_features:
cov = np.cov(X, rowvar=False)
values, vectors = np.linalg.eigh(cov)
index = n_features - self.n_components
else:
cov = np.cov(X)
values, vectors = np.linalg.eigh(cov)
vectors = (X.T @ vectors) / np.sqrt(sample_size * values)
index = sample_size - self.n_components
特征分解法根据样本量与特征量的关系采用不同的计算策略:
- 当样本量≥特征量时,直接计算协方差矩阵的特征分解
- 当样本量<特征量时,使用更高效的计算方式避免高维矩阵运算
EM算法实现
def em(self, X, iter_max):
self.W = np.eye(np.size(X, 1), self.n_components)
self.var = 1.
for i in range(iter_max):
W = np.copy(self.W)
stats = self._expectation(X)
self._maximization(X, *stats)
if np.allclose(W, self.W):
break
EM算法通过迭代优化参数:
- E步:计算潜在变量的期望
- M步:最大化似然函数更新参数
数据转换
def transform(self, X):
return np.linalg.solve(self.__M, ((X - self.mean) @ self.W).T).T
transform方法将输入数据投影到潜在空间,实现降维操作。
数学推导与理解
概率视角下的PCA
从概率角度看,PCA可以表示为:
p(x|z) = N(x|Wz + μ, σ²I) p(z) = N(z|0, I)
边缘分布为: p(x) = N(x|μ, C) 其中 C = WWᵀ + σ²I
特征分解法的数学基础
特征分解法基于数据协方差矩阵Σ的特征分解:
Σ = UΛUᵀ
主成分由特征值最大的几个特征向量组成。在代码实现中,考虑了两种情况:
- 样本充足时直接分解协方差矩阵
- 样本不足时使用更高效的计算方式
EM算法的推导
EM算法通过迭代优化潜在变量模型参数:
E步: 计算E[z|x]和E[zzᵀ|x]
M步: 更新W = XᵀE[z] (∑E[zzᵀ])⁻¹ 更新σ² = 平均残差
实际应用建议
- 对于大规模数据集,特征分解法通常更高效
- 当特征维度很高时,EM算法可能更稳定
- 主成分数量的选择可以通过观察特征值衰减或交叉验证确定
- 数据预处理(标准化)对PCA效果至关重要
总结
Mikoto10032/DeepLearning项目中的PCA实现提供了两种不同的求解方式,涵盖了PCA的传统实现和概率视角。理解这些实现的数学基础对于正确应用PCA至关重要。在实际应用中,应根据数据特点和计算资源选择合适的算法变体。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考