深度学习中PCA降维算法的实现与原理分析

深度学习中PCA降维算法的实现与原理分析

DeepLearning 深度学习入门教程, 优秀文章, Deep Learning Tutorial DeepLearning 项目地址: https://gitcode.com/gh_mirrors/deeplearnin/DeepLearning

概述

主成分分析(PCA)是一种广泛应用于机器学习和数据科学中的降维技术。本文将以Mikoto10032/DeepLearning项目中的PCA实现为例,深入讲解PCA的数学原理和Python实现细节。该实现提供了两种不同的PCA求解方法:特征分解法和期望最大化(EM)算法。

PCA的基本原理

PCA的核心思想是通过线性变换将高维数据投影到低维空间,同时保留数据的主要特征。从概率角度看,PCA可以理解为对潜在变量模型的极大似然估计:

x ~ ∫z N(x|Wz+μ,σ²)N(z|0,I)dz

其中:

  • x是观测变量
  • z是潜在变量
  • W是投影矩阵
  • μ是均值向量
  • σ²是噪声方差

代码实现解析

初始化与参数设置

class PCA(object):
    def __init__(self, n_components):
        assert isinstance(n_components, int)
        self.n_components = n_components

构造函数接收一个整数参数n_components,指定要保留的主成分数量。这个参数决定了降维后的数据维度。

拟合方法

def fit(self, X, method="eigen", iter_max=100):
    self.mean = np.mean(X, axis=0)
    getattr(self, method)(X - self.mean, iter_max)

fit方法提供了两种拟合方式:

  1. "eigen":基于特征分解的传统PCA实现
  2. "em":基于期望最大化算法的概率PCA实现

特征分解法实现

def eigen(self, X, *arg):
    sample_size, n_features = X.shape
    if sample_size >= n_features:
        cov = np.cov(X, rowvar=False)
        values, vectors = np.linalg.eigh(cov)
        index = n_features - self.n_components
    else:
        cov = np.cov(X)
        values, vectors = np.linalg.eigh(cov)
        vectors = (X.T @ vectors) / np.sqrt(sample_size * values)
        index = sample_size - self.n_components

特征分解法根据样本量与特征量的关系采用不同的计算策略:

  • 当样本量≥特征量时,直接计算协方差矩阵的特征分解
  • 当样本量<特征量时,使用更高效的计算方式避免高维矩阵运算

EM算法实现

def em(self, X, iter_max):
    self.W = np.eye(np.size(X, 1), self.n_components)
    self.var = 1.
    for i in range(iter_max):
        W = np.copy(self.W)
        stats = self._expectation(X)
        self._maximization(X, *stats)
        if np.allclose(W, self.W):
            break

EM算法通过迭代优化参数:

  1. E步:计算潜在变量的期望
  2. M步:最大化似然函数更新参数

数据转换

def transform(self, X):
    return np.linalg.solve(self.__M, ((X - self.mean) @ self.W).T).T

transform方法将输入数据投影到潜在空间,实现降维操作。

数学推导与理解

概率视角下的PCA

从概率角度看,PCA可以表示为:

p(x|z) = N(x|Wz + μ, σ²I) p(z) = N(z|0, I)

边缘分布为: p(x) = N(x|μ, C) 其中 C = WWᵀ + σ²I

特征分解法的数学基础

特征分解法基于数据协方差矩阵Σ的特征分解:

Σ = UΛUᵀ

主成分由特征值最大的几个特征向量组成。在代码实现中,考虑了两种情况:

  1. 样本充足时直接分解协方差矩阵
  2. 样本不足时使用更高效的计算方式

EM算法的推导

EM算法通过迭代优化潜在变量模型参数:

E步: 计算E[z|x]和E[zzᵀ|x]

M步: 更新W = XᵀE[z] (∑E[zzᵀ])⁻¹ 更新σ² = 平均残差

实际应用建议

  1. 对于大规模数据集,特征分解法通常更高效
  2. 当特征维度很高时,EM算法可能更稳定
  3. 主成分数量的选择可以通过观察特征值衰减或交叉验证确定
  4. 数据预处理(标准化)对PCA效果至关重要

总结

Mikoto10032/DeepLearning项目中的PCA实现提供了两种不同的求解方式,涵盖了PCA的传统实现和概率视角。理解这些实现的数学基础对于正确应用PCA至关重要。在实际应用中,应根据数据特点和计算资源选择合适的算法变体。

DeepLearning 深度学习入门教程, 优秀文章, Deep Learning Tutorial DeepLearning 项目地址: https://gitcode.com/gh_mirrors/deeplearnin/DeepLearning

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

舒璇辛Bertina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值