CatVton-Flux 项目安装与配置指南
catvton-flux 项目地址: https://gitcode.com/gh_mirrors/ca/catvton-flux
1. 项目基础介绍
CatVton-Flux 是一个结合了 CATVTON 和 Flux fill inpainting 模型的虚拟试衣解决方案。该方案能够实现逼真且准确的衣物转移效果,并受到 In-Context LoRA 技术的启发,用于提升虚拟试衣的精度。
主要编程语言:Python
2. 关键技术和框架
- CATVTON: 用于虚拟试衣的扩散模型,通过拼接技术实现更自然的衣物转换效果。
- Flux fill inpainting: 用于图像修复的模型,能够填补图像中的缺失部分。
- In-Context LoRA: 一种用于提升文本生成模型性能的提示工程技术。
- PyTorch: 深度学习框架,用于模型的训练和推理。
3. 安装和配置准备工作
在开始安装之前,请确保你的计算机满足以下要求:
- Python 3.10
- VRAM >= 40GB(建议使用 80GB GPU 以避免内存溢出错误)
- Git
安装步骤
-
克隆项目仓库
打开终端(或命令提示符),运行以下命令来克隆项目仓库:
git clone https://github.com/nftblackmagic/catvton-flux.git cd catvton-flux
-
创建虚拟环境
创建一个名为
flux
的虚拟环境,并激活它:conda create -n flux python=3.10 conda activate flux
-
安装依赖
在虚拟环境中,使用以下命令安装项目所需的所有依赖:
pip install -r requirements.txt
-
登录 Hugging Face
为了使用 Hugging Face 的模型权重,需要先登录你的 Hugging Face 账户:
huggingface-cli login
-
下载模型权重
根据项目文档,将所需的模型权重下载到本地。
-
开始使用
按照项目文档中的示例命令,开始使用 CatVton-Flux 进行虚拟试衣或衣物恢复的推理操作。
以上步骤为 CatVton-Flux 的基本安装和配置指南,适用于初次接触该项目的用户。在实际使用过程中,请参照项目官方文档以获取更多详细的操作说明。
catvton-flux 项目地址: https://gitcode.com/gh_mirrors/ca/catvton-flux