Whisper Turbo MLX 使用教程

Whisper Turbo MLX 使用教程

whisper-turbo-mlx Blazing fast whisper turbo for ASR (speech-to-text) tasks whisper-turbo-mlx 项目地址: https://gitcode.com/gh_mirrors/wh/whisper-turbo-mlx

1. 项目介绍

Whisper Turbo MLX 是一个快速的、轻量级的 Whisper 模型实现,使用 MLX 构建,整个项目包含在一个不足 300 行代码的单一文件中,旨在实现高效的音频转录。

2. 项目快速启动

首先,确保您的系统中已经安装了 ffmpeg。接着,按照以下步骤操作:

brew install ffmpeg
git clone https://github.com/JosefAlbers/whisper-turbo-mlx.git
cd whisper-turbo-mlx
pip install -e .

快速启动脚本

要转录一个音频文件,可以使用以下命令:

wtm test.wav

在 Python 脚本中使用

from whisper_turbo import transcribe

transcribe('test.wav', any_lang=True)

参数说明

quick 参数允许您选择两种转录方法之一:

  • quick=True:使用并行处理方法进行更快转录。这种方法可能会产生较为生硬的输出,但速度显著加快,适合速度优先的场景(例如,将生成的转录快速喂给 LLM 以收集多个音频记录的快速摘要)。
  • quick=False(默认):使用循环处理方法,速度较慢但产生更忠实和连贯的转录(仍然比其他参考实现快)。

您可以在调用 transcribe 函数时指定这个参数:

wtm --quick=True
transcribe('test.wav', quick=True)

3. 应用案例和最佳实践

应用案例

  • 实时语音转文字:在实时通话或会议中,将语音实时转换为文字。
  • 音频文件转录:将大量音频文件转录为文字,用于数据分析、内容索引等。

最佳实践

  • 在转录大量文件时,使用 quick=True 以加快处理速度。
  • 对于需要高精度转录的场景,使用默认的 quick=False

4. 典型生态项目

Whisper Turbo MLX 可以与以下开源项目结合使用,以扩展其功能:

  • TensorFlow:利用 TensorFlow 进行深度学习模型的训练和优化。
  • Kaldi:结合 Kaldi 进行更复杂的语音识别任务。
  • NLTK:使用 NLTK 进行自然语言处理,提高转录后的文本质量。

以上就是 Whisper Turbo MLX 的使用教程,希望对您有所帮助!

whisper-turbo-mlx Blazing fast whisper turbo for ASR (speech-to-text) tasks whisper-turbo-mlx 项目地址: https://gitcode.com/gh_mirrors/wh/whisper-turbo-mlx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仰钰奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值