Whisper Turbo MLX 使用教程
1. 项目介绍
Whisper Turbo MLX 是一个快速的、轻量级的 Whisper 模型实现,使用 MLX 构建,整个项目包含在一个不足 300 行代码的单一文件中,旨在实现高效的音频转录。
2. 项目快速启动
首先,确保您的系统中已经安装了 ffmpeg。接着,按照以下步骤操作:
brew install ffmpeg
git clone https://github.com/JosefAlbers/whisper-turbo-mlx.git
cd whisper-turbo-mlx
pip install -e .
快速启动脚本
要转录一个音频文件,可以使用以下命令:
wtm test.wav
在 Python 脚本中使用
from whisper_turbo import transcribe
transcribe('test.wav', any_lang=True)
参数说明
quick
参数允许您选择两种转录方法之一:
quick=True
:使用并行处理方法进行更快转录。这种方法可能会产生较为生硬的输出,但速度显著加快,适合速度优先的场景(例如,将生成的转录快速喂给 LLM 以收集多个音频记录的快速摘要)。quick=False
(默认):使用循环处理方法,速度较慢但产生更忠实和连贯的转录(仍然比其他参考实现快)。
您可以在调用 transcribe
函数时指定这个参数:
wtm --quick=True
transcribe('test.wav', quick=True)
3. 应用案例和最佳实践
应用案例
- 实时语音转文字:在实时通话或会议中,将语音实时转换为文字。
- 音频文件转录:将大量音频文件转录为文字,用于数据分析、内容索引等。
最佳实践
- 在转录大量文件时,使用
quick=True
以加快处理速度。 - 对于需要高精度转录的场景,使用默认的
quick=False
。
4. 典型生态项目
Whisper Turbo MLX 可以与以下开源项目结合使用,以扩展其功能:
- TensorFlow:利用 TensorFlow 进行深度学习模型的训练和优化。
- Kaldi:结合 Kaldi 进行更复杂的语音识别任务。
- NLTK:使用 NLTK 进行自然语言处理,提高转录后的文本质量。
以上就是 Whisper Turbo MLX 的使用教程,希望对您有所帮助!