LIME 开源项目使用教程

LIME 开源项目使用教程

limeLime: Explaining the predictions of any machine learning classifier项目地址:https://gitcode.com/gh_mirrors/lime/lime

1. 项目的目录结构及介绍

LIME(Local Interpretable Model-agnostic Explanations)是一个用于解释机器学习模型预测的开源工具。以下是项目的主要目录结构及其介绍:

lime/
├── lime/
│   ├── __init__.py
│   ├── explanation.py
│   ├── lime_base.py
│   ├── lime_tabular.py
│   ├── submodular_pick.py
│   └── utils.py
├── examples/
│   ├── image_classification.ipynb
│   ├── iris_classification.ipynb
│   └── text_classification.ipynb
├── setup.py
├── README.md
└── requirements.txt
  • lime/: 包含LIME的核心代码文件。
    • __init__.py: 初始化文件。
    • explanation.py: 解释生成模块。
    • lime_base.py: LIME的基础模块。
    • lime_tabular.py: 用于表格数据的LIME模块。
    • submodular_pick.py: 子模块选择模块。
    • utils.py: 工具函数。
  • examples/: 包含一些示例代码,如图像分类、鸢尾花分类和文本分类。
  • setup.py: 安装脚本。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖文件。

2. 项目的启动文件介绍

LIME项目的启动文件主要是示例文件,位于examples/目录下。以下是一些主要的启动文件:

  • image_classification.ipynb: 图像分类示例,展示了如何使用LIME解释图像分类模型的预测。
  • iris_classification.ipynb: 鸢尾花分类示例,展示了如何使用LIME解释鸢尾花数据集的分类模型。
  • text_classification.ipynb: 文本分类示例,展示了如何使用LIME解释文本分类模型的预测。

这些示例文件可以通过Jupyter Notebook打开并运行,以了解LIME的基本使用方法。

3. 项目的配置文件介绍

LIME项目的配置文件主要是requirements.txt,它列出了项目运行所需的依赖包。以下是requirements.txt的内容示例:

numpy
scipy
scikit-learn
matplotlib
pandas

在安装LIME项目时,可以通过以下命令安装这些依赖包:

pip install -r requirements.txt

此外,项目的安装脚本setup.py也可以用于安装项目及其依赖:

python setup.py install

通过这些配置文件和脚本,可以确保项目在不同环境中正确安装和运行。

limeLime: Explaining the predictions of any machine learning classifier项目地址:https://gitcode.com/gh_mirrors/lime/lime

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余洋婵Anita

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值