探索视频领域新星:Video Swin Transformer
项目地址:https://gitcode.com/gh_mirrors/vi/Video-Swin-Transformer
Video Swin Transformer 是一款革命性的视频理解模型,其设计理念源自于近期热门的Swin Transformer。这款模型由Ze Liu等人开发,旨在通过引入局部性诱导偏置,实现比传统全局自注意力计算更优的速度与精度平衡。Video Swin Transformer 在图像领域的Swin Transformer基础上进行创新,充分利用预训练图像模型的力量,同时兼顾高效和准确。
模型简介
Video Swin Transformer 的核心在于其独特的局部性设计,通过适应性地调整Swin Transformer以适应视频数据的特点。这种设计使得模型在处理视频时,能够更好地捕捉时空信息,同时大幅降低预训练数据需求和模型规模。在一系列基准测试中,如Kinetics-400和Kinetics-600,该模型展现出卓越的性能,top-1准确度分别达到84.9%和86.1%,并且在Something-Something v2上取得了69.6%的顶点准确率。
技术剖析
Video Swin Transformer 引入了基于窗口的分块自注意力机制,这一机制允许模型在局部区域进行高效的注意力计算,从而实现计算资源的有效利用。同时,由于模型可以从预先训练的图像模型中继承知识,它能够在减少预训练数据量(仅为原数据量的大约1/20)和模型大小(大约为1/3)的情况下,依然保持高性能。
应用场景
这款模型广泛适用于各种视频理解和时间序列分析任务,包括但不限于:
- 行动识别:在监控视频、体育赛事等场景下,Video Swin Transformer 可精确地识别人类的动作。
- 事件检测:在社交媒体视频中,它可以捕捉并理解特定事件的发生过程。
- 时间序列预测:在自动驾驶或机器人应用中,它可以预测未来帧中的对象运动。
项目特点
- 高效性:通过局部注意力机制减少计算复杂度,提高运行速度。
- 准确性:在多种基准测试上表现出顶尖的分类性能。
- 可扩展性:能够灵活适应不同规模的模型,从轻量级到大型模型都可应用。
- 预训练支持:可以利用已有的图像模型加速学习进程,减少额外的数据和计算资源。
为了便于使用,项目提供清晰的配置文件、预训练模型以及详细的指导文档,包括数据准备、推理和训练步骤。无论你是研究人员还是开发者,Video Swin Transformer 都是你的理想选择,带你探索视频理解的新可能。
要开始使用,请访问项目仓库,并参考提供的指南开始你的旅程吧!
# 克隆项目
git clone https://github.com/SwinTransformer/Video-Swin-Transformer.git
# 安装依赖
参考 docs/install.md
# 数据准备
参考 docs/data_preparation.md
# 开始使用
参考项目内相应命令行脚本进行推理和训练
引用本文库时,请不要忘记给予作者应有的署名:
@article{liu2021video,
title={Video Swin Transformer},
author={Liu, Ze and Ning, Jia and Cao, Yue and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Hu, Han},
journal={arXiv preprint arXiv:2106.13230},
year={2021}
}
@article{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}
}
立即行动,用Video Swin Transformer解锁视频数据的无限潜力!
Video-Swin-Transformer 项目地址: https://gitcode.com/gh_mirrors/vi/Video-Swin-Transformer