MidiBERT-Piano 开源项目教程

MidiBERT-Piano 开源项目教程

MIDI-BERTThis is the official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.项目地址:https://gitcode.com/gh_mirrors/mi/MIDI-BERT

项目介绍

MidiBERT-Piano 是一个用于符号音乐理解的大规模预训练项目。该项目基于 Transformer 模型,通过 BERT 方法对 MIDI 数据进行预训练,并可用于下游的音乐分类任务,如旋律提取、速度预测、风格分类和情感分类。MidiBERT-Piano 的官方仓库地址为:https://github.com/wazenmai/MIDI-BERT

项目快速启动

安装依赖

首先,克隆项目仓库并安装所需的依赖包:

git clone https://github.com/wazenmai/MIDI-BERT.git
cd MIDI-BERT
pip install -r requirements.txt

数据准备

项目提供了数据准备的脚本,位于 scripts 文件夹中。你可以使用以下命令来准备数据:

bash scripts/prepare_data.sh

预训练和微调

预训练和微调的详细步骤请参考 MidiBERT 文件夹中的 README.md 文件。以下是一个简化的示例:

# 预训练
bash scripts/pretrain.sh

# 微调
bash scripts/finetune.sh

评估

评估模型的性能可以使用以下命令:

bash scripts/eval.sh

应用案例和最佳实践

旋律提取

使用预训练的 MidiBERT-Piano 模型进行旋律提取的步骤如下:

  1. 加载预训练模型。
  2. 输入 MIDI 文件。
  3. 提取旋律并输出为新的 MIDI 文件。

速度预测

速度预测的步骤与旋律提取类似,主要区别在于使用的模型和输出的结果。

风格分类和情感分类

风格分类和情感分类通常需要更多的数据和更复杂的模型结构。最佳实践包括:

  1. 使用多样化的数据集进行预训练。
  2. 在特定任务上进行微调。
  3. 使用交叉验证来评估模型性能。

典型生态项目

音乐生成

结合 MidiBERT-Piano 和音乐生成模型,可以创建自动作曲系统。

音乐分析

使用 MidiBERT-Piano 进行音乐分析,如和声分析、节奏分析等。

音乐教育

在音乐教育领域,MidiBERT-Piano 可以用于自动评分和反馈系统,帮助学生改进演奏技巧。

通过以上模块的介绍,你可以快速上手并应用 MidiBERT-Piano 项目,实现各种音乐理解和生成任务。

MIDI-BERTThis is the official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.项目地址:https://gitcode.com/gh_mirrors/mi/MIDI-BERT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曹令琨Iris

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值