Quadruped-PyMPC:一款高效的四足机器人模型预测控制器

Quadruped-PyMPC:一款高效的四足机器人模型预测控制器

Quadruped-PyMPC A model predictive controller for quadruped robots based on the single rigid body model and written in python. Gradient-based (acados) or Sampling-based (jax) Quadruped-PyMPC 项目地址: https://gitcode.com/gh_mirrors/qu/Quadruped-PyMPC

项目介绍

Quadruped-PyMPC 是一个基于 Python 开发的模型预测控制器(MPC)项目,旨在为四足机器人提供高效、稳定的运动控制。项目采用单一刚体模型,并通过两种方式进行优化:基于梯度的方法(使用 acados 库)和基于采样的方法(使用 jax 库)。Quadruped-PyMPC 已在真实机器人上进行测试,并且与 Mujoco 仿真环境兼容。

项目技术分析

Quadruped-PyMPC 的核心是一个高效的运动控制器,该控制器通过优化算法来预测和调整机器人的运动轨迹。以下是项目的技术亮点:

  1. 基于梯度的 MPC:在英特尔 i7-13700H CPU 上,每步计算时间少于 5 毫秒。

  2. 可选的积分器:用于模型失配的补偿。

  3. 地面反应力平滑:可选功能,以减少地面接触力突变对机器人的影响。

  4. ** foothold 优化**:可选功能,用于优化足部着地位置。

  5. 实时迭代:可选的实时迭代或高级步进实时迭代,以适应动态环境。

  6. 零点力矩点/质心约束:可选功能,确保机器人运动过程中的稳定性。

  7. 基于 Lyapunov 的标准:可选的稳定性判断依据。

  8. 基于采样的 MPC:在 NVIDIA 4050 移动 GPU 上,10,000 次并行滚动仅需要少于 2 毫秒。

    • 步频适应:可选功能,用于增强机器人的鲁棒性。
    • 多种策略:包括随机采样、mppi 或 cemppi。
    • 不同的控制参数化:零阶、线性样条或立方样条。

项目技术应用场景

Quadruped-PyMPC 可以应用于多种四足机器人的控制场景,包括但不限于:

  • 复杂地形行走:在崎岖不平的地面上保持稳定行走。
  • 动态避障:**在动态环境中进行障碍物回避。
  • 自主导航:通过实时调整步态,实现机器人的自主导航。

项目特点

  1. 高效性:通过优化算法,实现了快速的计算速度,确保了机器人的实时响应。
  2. 鲁棒性:通过多种可选功能和稳定性判断,增强了机器人在不同环境下的鲁棒性。
  3. 灵活性:支持不同的控制参数化和多种优化策略,适应不同的应用需求。
  4. 兼容性:与 Mujoco 环境兼容,便于在仿真环境中进行测试和验证。

推荐理由

Quadruped-PyMPC 作为一款高效的四足机器人模型预测控制器,不仅提供了强大的功能,还具有高度的可定制性和兼容性。以下是几个推荐理由:

  • 实时性能:基于高效的优化算法,能够在极短的时间内完成计算,确保机器人的实时运动控制。
  • 稳定性:通过多种稳定性保障机制,确保机器人在复杂环境中的稳定行走。
  • 适用范围广:无论是复杂地形还是动态环境,Quadruped-PyMPC 都能提供有效的运动控制策略。

总结而言,Quadruped-PyMPC 是一个值得推荐的开源项目,它不仅为四足机器人的研究提供了强大的工具,也为相关领域的开发者提供了一个可扩展的平台。通过使用 Quadruped-PyMPC,研究者和开发者可以更好地探索四足机器人的运动控制,推动这一领域的技术进步。

Quadruped-PyMPC A model predictive controller for quadruped robots based on the single rigid body model and written in python. Gradient-based (acados) or Sampling-based (jax) Quadruped-PyMPC 项目地址: https://gitcode.com/gh_mirrors/qu/Quadruped-PyMPC

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤辰城Agatha

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值