Poisson Disk Sampling 开源项目教程

Poisson Disk Sampling 开源项目教程

poisson-disk-samplingPoisson disk sampling in arbitrary dimensions项目地址:https://gitcode.com/gh_mirrors/po/poisson-disk-sampling

项目介绍

Poisson Disk Sampling 是一个用于在任意维度中生成泊松盘采样的 JavaScript 库。泊松盘采样生成紧密排列但彼此之间不小于指定最小距离的点,从而形成更自然的分布模式。该项目支持多种维度(1D、2D、3D及以上),并允许配置最大尝试次数、最小和最大距离以及使用自定义函数来驱动分布密度。

项目快速启动

安装

首先,通过 npm 安装 Poisson Disk Sampling:

npm install poisson-disk-sampling

基本使用

以下是一个简单的示例,展示如何在 2D 空间中生成泊松盘采样点:

const PoissonDiskSampling = require('poisson-disk-sampling');

const p = new PoissonDiskSampling({
  shape: [600, 300], // 定义采样区域的大小
  minDistance: 20,   // 最小距离
  maxDistance: 30,   // 最大距离
  tries: 10          // 尝试次数
});

const points = p.fill(); // 生成采样点
console.log(points);     // 输出采样点数组

应用案例和最佳实践

应用案例

  1. 游戏开发:在游戏开发中,泊松盘采样可以用于生成自然分布的树木、岩石等游戏元素,提高场景的真实感。
  2. 数据可视化:在数据可视化中,可以使用泊松盘采样生成均匀分布的点,以更好地展示数据分布。

最佳实践

  1. 调整参数:根据具体需求调整 minDistancemaxDistancetries 参数,以获得最佳的采样效果。
  2. 多维度应用:尝试在不同维度(如 3D)中应用泊松盘采样,扩展应用场景。

典型生态项目

Poisson Disk Sampling 可以与其他开源项目结合使用,例如:

  1. Three.js:在 3D 场景中使用 Three.js 结合 Poisson Disk Sampling 生成自然分布的 3D 模型。
  2. D3.js:在数据可视化项目中,使用 D3.js 结合 Poisson Disk Sampling 生成均匀分布的数据点。

通过这些结合使用,可以进一步扩展 Poisson Disk Sampling 的应用范围和效果。

poisson-disk-samplingPoisson disk sampling in arbitrary dimensions项目地址:https://gitcode.com/gh_mirrors/po/poisson-disk-sampling

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羿妍玫Ivan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值