Poisson Disk Sampling 开源项目教程
项目介绍
Poisson Disk Sampling 是一个用于在任意维度中生成泊松盘采样的 JavaScript 库。泊松盘采样生成紧密排列但彼此之间不小于指定最小距离的点,从而形成更自然的分布模式。该项目支持多种维度(1D、2D、3D及以上),并允许配置最大尝试次数、最小和最大距离以及使用自定义函数来驱动分布密度。
项目快速启动
安装
首先,通过 npm 安装 Poisson Disk Sampling:
npm install poisson-disk-sampling
基本使用
以下是一个简单的示例,展示如何在 2D 空间中生成泊松盘采样点:
const PoissonDiskSampling = require('poisson-disk-sampling');
const p = new PoissonDiskSampling({
shape: [600, 300], // 定义采样区域的大小
minDistance: 20, // 最小距离
maxDistance: 30, // 最大距离
tries: 10 // 尝试次数
});
const points = p.fill(); // 生成采样点
console.log(points); // 输出采样点数组
应用案例和最佳实践
应用案例
- 游戏开发:在游戏开发中,泊松盘采样可以用于生成自然分布的树木、岩石等游戏元素,提高场景的真实感。
- 数据可视化:在数据可视化中,可以使用泊松盘采样生成均匀分布的点,以更好地展示数据分布。
最佳实践
- 调整参数:根据具体需求调整
minDistance
、maxDistance
和tries
参数,以获得最佳的采样效果。 - 多维度应用:尝试在不同维度(如 3D)中应用泊松盘采样,扩展应用场景。
典型生态项目
Poisson Disk Sampling 可以与其他开源项目结合使用,例如:
- Three.js:在 3D 场景中使用 Three.js 结合 Poisson Disk Sampling 生成自然分布的 3D 模型。
- D3.js:在数据可视化项目中,使用 D3.js 结合 Poisson Disk Sampling 生成均匀分布的数据点。
通过这些结合使用,可以进一步扩展 Poisson Disk Sampling 的应用范围和效果。