tsdownsample:高效的时间序列降采样工具
项目介绍
tsdownsample 是一个用 Rust 语言编写的高效时间序列降采样库。降采样是一种数据预处理技术,它通过减少数据点的数量来简化大型时间序列数据集,使其更易于可视化和分析。tsdownsample 利用 Rust 的高性能特性和 PyO3 绑定,为 Python 提供了快速、灵活的降采样功能。
项目技术分析
tsdownsample 的核心优势在于其高效的执行速度和内存使用。以下是项目技术层面的几个关键点:
- 性能优化:tsdownsample 使用了 argminmax 库进行 SIMD 加速,能够显著提高数据处理速度。SIMD(Single Instruction, Multiple Data)是一种并行计算技术,可以在单个操作中处理多个数据点,从而提升计算效率。
- 多线程处理:项目利用 Rust 的 Rayon 库实现多线程,从而在处理大量数据时,可以更有效地利用多核 CPU 的性能。
- 内存效率:tsdownsample 在处理数据时,仅在需要时对数据进行视图操作,而不创建额外的数据副本或中间数据结构,从而节省内存。
项目技术应用场景
tsdownsample 适用于多种需要时间序列数据降采样的场景,包括但不限于:
- 数据可视化:当时间序列数据点过多时,直接绘制可能会导致图表难以阅读。使用 tsdownsample 可以减少数据点数量,生成更清晰、更易于理解的可视化结果。
- 数据预处理:在机器学习或统计分析之前,对时间序列数据进行降采样,可以减少计算量和存储需求,加速模型训练和推理过程。
- 资源优化:在资源受限的环境下,如嵌入式系统或云计算服务,减少数据点的数量可以降低资源消耗,提高系统整体性能。
项目特点
以下是 tsdownsample 的几个显著特点:
- 速度快:利用 Rust 语言和 PyO3 绑定,实现了高性能的时间序列降采样。
- 高效内存使用:通过在数据上创建视图而不是复制数据,实现了内存的高效使用。
- 类型灵活:支持多种数据类型,包括
f32
、f64
、i16
、i32
、i64
、u16
、u32
、u64
、datetime64
、timedelta64
等,特别对f16
类型提供了超高速的降采样处理。 - 易于使用:提供了简单且灵活的 API 接口,方便用户快速集成和使用。
安装
pip install tsdownsample
使用示例
from tsdownsample import MinMaxLTTBDownsampler
import numpy as np
# 创建时间序列
y = np.random.randn(10_000_000)
x = np.arange(len(y))
# 降采样至1000个点
s_ds = MinMaxLTTBDownsampler().downsample(y, n_out=1000)
# 获取降采样数据
downsampled_y = y[s_ds]
# 使用 x 数据降采样至1000个点
s_ds = MinMaxLTTBDownsampler().downsample(x, y, n_out=1000)
# 获取降采样数据
downsampled_x = x[s_ds]
downsampled_y = y[s_ds]
tsdownsample 通过其高效的性能和灵活的 API,为时间序列数据的处理和分析提供了强大的工具。无论是数据科学家、算法工程师还是软件开发者,都可以从中受益,提升工作效率和资源利用效率。