tsdownsample:高效的时间序列降采样工具

tsdownsample:高效的时间序列降采样工具

tsdownsample High-performance time series downsampling algorithms for visualization tsdownsample 项目地址: https://gitcode.com/gh_mirrors/ts/tsdownsample

项目介绍

tsdownsample 是一个用 Rust 语言编写的高效时间序列降采样库。降采样是一种数据预处理技术,它通过减少数据点的数量来简化大型时间序列数据集,使其更易于可视化和分析。tsdownsample 利用 Rust 的高性能特性和 PyO3 绑定,为 Python 提供了快速、灵活的降采样功能。

项目技术分析

tsdownsample 的核心优势在于其高效的执行速度和内存使用。以下是项目技术层面的几个关键点:

  • 性能优化:tsdownsample 使用了 argminmax 库进行 SIMD 加速,能够显著提高数据处理速度。SIMD(Single Instruction, Multiple Data)是一种并行计算技术,可以在单个操作中处理多个数据点,从而提升计算效率。
  • 多线程处理:项目利用 Rust 的 Rayon 库实现多线程,从而在处理大量数据时,可以更有效地利用多核 CPU 的性能。
  • 内存效率:tsdownsample 在处理数据时,仅在需要时对数据进行视图操作,而不创建额外的数据副本或中间数据结构,从而节省内存。

项目技术应用场景

tsdownsample 适用于多种需要时间序列数据降采样的场景,包括但不限于:

  • 数据可视化:当时间序列数据点过多时,直接绘制可能会导致图表难以阅读。使用 tsdownsample 可以减少数据点数量,生成更清晰、更易于理解的可视化结果。
  • 数据预处理:在机器学习或统计分析之前,对时间序列数据进行降采样,可以减少计算量和存储需求,加速模型训练和推理过程。
  • 资源优化:在资源受限的环境下,如嵌入式系统或云计算服务,减少数据点的数量可以降低资源消耗,提高系统整体性能。

项目特点

以下是 tsdownsample 的几个显著特点:

  • 速度快:利用 Rust 语言和 PyO3 绑定,实现了高性能的时间序列降采样。
  • 高效内存使用:通过在数据上创建视图而不是复制数据,实现了内存的高效使用。
  • 类型灵活:支持多种数据类型,包括 f32f64i16i32i64u16u32u64datetime64timedelta64 等,特别对 f16 类型提供了超高速的降采样处理。
  • 易于使用:提供了简单且灵活的 API 接口,方便用户快速集成和使用。

安装

pip install tsdownsample

使用示例

from tsdownsample import MinMaxLTTBDownsampler
import numpy as np

# 创建时间序列
y = np.random.randn(10_000_000)
x = np.arange(len(y))

# 降采样至1000个点
s_ds = MinMaxLTTBDownsampler().downsample(y, n_out=1000)

# 获取降采样数据
downsampled_y = y[s_ds]

# 使用 x 数据降采样至1000个点
s_ds = MinMaxLTTBDownsampler().downsample(x, y, n_out=1000)

# 获取降采样数据
downsampled_x = x[s_ds]
downsampled_y = y[s_ds]

tsdownsample 通过其高效的性能和灵活的 API,为时间序列数据的处理和分析提供了强大的工具。无论是数据科学家、算法工程师还是软件开发者,都可以从中受益,提升工作效率和资源利用效率。

tsdownsample High-performance time series downsampling algorithms for visualization tsdownsample 项目地址: https://gitcode.com/gh_mirrors/ts/tsdownsample

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董斯意

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值