Safe RLHF 开源项目教程
项目介绍
Safe RLHF(Safe Reinforcement Learning from Human Feedback)是一个由北京大学(PKU-Alignment团队)开发的高度模块化的开源RLHF框架。该项目旨在提供训练数据和可复现的代码管道,以支持通过Safe RLHF方法进行的约束对齐大型语言模型(LLM)研究。主要特点包括:
- 支持SFT、RLHF和Safe RLHF训练流行的预训练模型,如LLaMA、OPT、Baichuan等。
- 提供一个大型的人类标注数据集(高达100万对),包括有用和无害的偏好,以支持可复现的RLHF研究。
- 支持奖励模型和成本模型的训练,并提供预训练的检查点。
- 支持自定义参数和数据集进行SFT和RLHF训练。
项目快速启动
环境准备
首先,确保你已经安装了必要的依赖项:
pip install -r requirements.txt
克隆项目
git clone https://github.com/PKU-Alignment/safe-rlhf.git
cd safe-rlhf
运行示例
以下是一个简单的示例,展示如何使用Safe RLHF进行模型训练:
from safe_rlhf import SafeRLHF
# 初始化Safe RLHF对象
safe_rlhf = SafeRLHF(model_name='LLaMA', dataset_path='path/to/dataset')
# 开始训练
safe_rlhf.train()
应用案例和最佳实践
案例一:使用Safe RLHF进行模型对齐
在这个案例中,我们将展示如何使用Safe RLHF框架对预训练的LLaMA模型进行对齐,以确保其输出符合特定的安全标准。
from safe_rlhf import SafeRLHF
# 初始化Safe RLHF对象
safe_rlhf = SafeRLHF(model_name='LLaMA', dataset_path='path/to/dataset')
# 设置对齐参数
safe_rlhf.set_alignment_params(safety_threshold=0.95)
# 开始对齐训练
safe_rlhf.align()
案例二:自定义数据集和参数
在这个案例中,我们将展示如何使用自定义数据集和参数进行训练。
from safe_rlhf import SafeRLHF
# 初始化Safe RLHF对象
safe_rlhf = SafeRLHF(model_name='LLaMA', dataset_path='path/to/custom_dataset')
# 设置自定义参数
custom_params = {
'learning_rate': 0.001,
'batch_size': 32,
'epochs': 10
}
# 开始训练
safe_rlhf.train(custom_params=custom_params)
典型生态项目
项目一:DeepSpeed
DeepSpeed是一个用于大规模模型训练的深度学习优化库,可以与Safe RLHF结合使用,以提高训练效率和可扩展性。
项目二:Transformers
Transformers库由Hugging Face提供,包含了多种预训练的语言模型,如LLaMA、OPT等,这些模型可以与Safe RLHF框架无缝集成,进行进一步的训练和对齐。
项目三:LoRA
LoRA(Low-Rank Adaptation)是一种高效的模型微调技术,可以与Safe RLHF结合使用,以减少训练所需的内存和计算资源。
通过结合这些生态项目,Safe RLHF可以实现更高效、更安全的模型训练和对齐。