FinMem-LLM-StockTrading: 智能股票交易框架安装与使用指南
1. 项目目录结构及介绍
FinMem-LLM-StockTrading 是一个基于大型语言模型(LLM)的高性能股票交易代理系统,旨在通过分层记忆和角色设计提升自动化交易表现。以下是其主要的目录结构和各部分简要说明:
- LICENSE: 许可证文件,表明该项目遵循MIT协议。
- README.md: 项目简介,包含核心概念、更新日志和基本使用指引。
- config: 包含配置文件,用于设定不同模型运行时所需的参数。
- config.toml: 示例配置文件,定义了模型类型、端点地址等关键设置。
- data: 存放项目所需的数据文件,如市场数据、训练或测试集。
- figures: 可能存放图表和分析结果图。
- puppy: 项目的主要源代码目录,包含核心逻辑实现。
- run.py: 程序入口文件,用于启动模拟交易或者从检查点继续执行。
- gitignore: 忽略特定文件类型的配置文件。
- gitpod.yml: 针对GitPod的环境配置文件。
- poetry.lock, pyproject.toml: 依赖管理和版本控制文件。
- runGemini.sh, runOpeAI.sh, runTGI.sh: 脚本文件,用于特定操作或环境设置。
2. 项目的启动文件介绍
run.py
run.py
是应用程序的核心入口点,支持两种主要模式:训练和测试。通过命令行参数,可以指定不同的行为:
- 功能: 启动金融市场的模拟交易过程,允许用户自定义市场数据路径、时间范围、运行模式(train/test)、配置文件路径等。
- 示例用法:
python run.py sim --market-data-path=data/my_data.pkl --start-time=2023-01-01 --end-time=2023-12-31 --run-model=test --config-path=config/custom_config.toml
该命令将启动一个模拟测试环境,使用自定义配置,处理特定时间段内的市场数据。
3. 项目的配置文件介绍
配置文件 (config.toml
)
配置文件位于config/config.toml
(或用户指定的自定义位置),它定义了代理的关键运行参数,包括但不限于:
- 模型选择 (
model
),例如可以是"TGI"或"gpt-4"来指定使用的模型类型。 - API访问 需要设置
OPENAI_API_KEY
和可能的HF_TOKEN
以访问模型服务。 - 端点地址 (
end_point
) 指定模型调用的服务地址。 - 内存管理 参数,虽然具体细节未在引用中列出,但项目描述暗示存在与记忆相关的设置,可能是内部实现的细节。
设置环境变量也是重要一环,确保OPENAI_API_KEY
和HF_TOKEN
(如果使用Hugging Face模型)已正确设置于环境变量中。
为了充分利用FinMem的功能,需仔细调整这些配置项以匹配你的资源与需求。记得在正式应用前,详细阅读项目文档和源码注释,以便更深入理解每个参数的作用。