FinMem-LLM-StockTrading: 智能股票交易框架安装与使用指南

FinMem-LLM-StockTrading: 智能股票交易框架安装与使用指南

FinMem-LLM-StockTrading FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design FinMem-LLM-StockTrading 项目地址: https://gitcode.com/gh_mirrors/fi/FinMem-LLM-StockTrading

1. 项目目录结构及介绍

FinMem-LLM-StockTrading 是一个基于大型语言模型(LLM)的高性能股票交易代理系统,旨在通过分层记忆和角色设计提升自动化交易表现。以下是其主要的目录结构和各部分简要说明:

  • LICENSE: 许可证文件,表明该项目遵循MIT协议。
  • README.md: 项目简介,包含核心概念、更新日志和基本使用指引。
  • config: 包含配置文件,用于设定不同模型运行时所需的参数。
    • config.toml: 示例配置文件,定义了模型类型、端点地址等关键设置。
  • data: 存放项目所需的数据文件,如市场数据、训练或测试集。
  • figures: 可能存放图表和分析结果图。
  • puppy: 项目的主要源代码目录,包含核心逻辑实现。
  • run.py: 程序入口文件,用于启动模拟交易或者从检查点继续执行。
  • gitignore: 忽略特定文件类型的配置文件。
  • gitpod.yml: 针对GitPod的环境配置文件。
  • poetry.lock, pyproject.toml: 依赖管理和版本控制文件。
  • runGemini.sh, runOpeAI.sh, runTGI.sh: 脚本文件,用于特定操作或环境设置。

2. 项目的启动文件介绍

run.py

run.py是应用程序的核心入口点,支持两种主要模式:训练和测试。通过命令行参数,可以指定不同的行为:

  • 功能: 启动金融市场的模拟交易过程,允许用户自定义市场数据路径、时间范围、运行模式(train/test)、配置文件路径等。
  • 示例用法:
python run.py sim --market-data-path=data/my_data.pkl --start-time=2023-01-01 --end-time=2023-12-31 --run-model=test --config-path=config/custom_config.toml

该命令将启动一个模拟测试环境,使用自定义配置,处理特定时间段内的市场数据。

3. 项目的配置文件介绍

配置文件 (config.toml)

配置文件位于config/config.toml(或用户指定的自定义位置),它定义了代理的关键运行参数,包括但不限于:

  • 模型选择 (model),例如可以是"TGI"或"gpt-4"来指定使用的模型类型。
  • API访问 需要设置OPENAI_API_KEY和可能的HF_TOKEN以访问模型服务。
  • 端点地址 (end_point) 指定模型调用的服务地址。
  • 内存管理 参数,虽然具体细节未在引用中列出,但项目描述暗示存在与记忆相关的设置,可能是内部实现的细节。

设置环境变量也是重要一环,确保OPENAI_API_KEYHF_TOKEN(如果使用Hugging Face模型)已正确设置于环境变量中。

为了充分利用FinMem的功能,需仔细调整这些配置项以匹配你的资源与需求。记得在正式应用前,详细阅读项目文档和源码注释,以便更深入理解每个参数的作用。

FinMem-LLM-StockTrading FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design FinMem-LLM-StockTrading 项目地址: https://gitcode.com/gh_mirrors/fi/FinMem-LLM-StockTrading

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

袁立春Spencer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值