四足机器人ROS2控制框架使用教程
1. 项目介绍
本项目是基于ROS2的控制系统实现,适用于四足机器人的开源项目。它包含了多种控制器,用于在仿真环境和真实机器人上实现稳定行走。项目旨在提供一个用于四足机器人控制的统一框架,支持sim2real(仿真到现实)的应用。
2. 项目快速启动
环境准备
首先,确保您的系统已安装ROS2和必要的依赖项。
sudo apt-get update
sudo apt-get install ros-<YOUR_ROS2_DISTRO>-ros-core
克隆项目
克隆本项目到您的ROS2工作空间。
cd ~/ros2_ws/src
git clone https://github.com/legubiao/quadruped_ros2_control.git
安装依赖
使用rosdep
安装项目依赖。
rosdep install --from-paths src --ignore-src -r -y
编译项目
在ROS2工作空间中编译项目。
colcon build --packages-up-to unitree_guide_controller go2_description keyboard_input --symlink-install
运行仿真
以下是运行Mujoco仿真的步骤:
-
编译Unitree硬件接口。
cd ~/ros2_ws colcon build --packages-up-to hardware_unitree_mujoco
-
启动仿真。
source ~/ros2_ws/install/setup.bash ros2 launch unitree_guide_controller mujoco.launch.py
-
运行键盘控制节点。
source ~/ros2_ws/install/setup.bash ros2 run keyboard_input keyboard_input
3. 应用案例和最佳实践
- 多机器人模型:在
description
目录下可以找到更多机器人模型。 - 尝试更多控制器:可以尝试OCS2四足控制器和强化学习四足控制器。
- 模拟更多传感器:使用Gazebo四足游乐场进行带有激光雷达或深度摄像头的仿真。
- 真实机器人部署:了解如何在Unitree Go2机器人上部署。
4. 典型生态项目
- Unitree Guide:Unitree Robotics的开源项目,用于控制Unitree四足机器人。
- Legged Control:一个开源的NMPC、WBC、状态估计和sim2real框架,适用于四足机器人。
- RL SAR:机器人强化学习算法的仿真验证和物理部署。