开源项目教程:React Native Bottom Sheet 使用指南

开源项目教程:React Native Bottom Sheet 使用指南

bottom-sheet⬆️ A SwiftUI view component sliding in from bottom项目地址:https://gitcode.com/gh_mirrors/bo/bottom-sheet

目录结构及介绍

在我们开始探索 React Native Bottom Sheet 这个高性能且高度可定制的底部菜单组件之前,让我们先熟悉一下该项目的基本目录结构。

scripts

此目录包含了用于构建、测试和部署的脚本。

src

这是应用的主要源代码所在目录。它包括组件实现以及其他相关源文件如样式表和测试文件。

templates

该目录可能包含示例模板或其他预设元素供开发者快速上手使用。

.all-contributorsrc

这个文件通常用来记录贡献者的信息以及如何处理新的贡献者提交的内容。

.auto-changelog

自动更新 changelog 文件的配置信息。

.editorconfig, .eslintignore, .eslintrc.js

这些是编辑器和代码质量工具(如 ESLint)的配置文件。

.git*

包含 Git 版本控制所需的相关配置和忽略规则。

.huskyrc.json, .prettierignore, .prettierrc.json

分别用于配置 Husky 钩子和 Prettier 格式化选项。

release-it.json

管理版本发布的自动化流程。

CHANGELOG.md, CODE_OF_CONDUCT.md, CONTRIBUTING.md, LICENSE, README.md

分别为变更日志、行为准则、贡献指南、许可证和读我文档的标准 Markdown 文件。

启动文件介绍

虽然没有明确提及“启动文件”,但通常应用程序入口点会在 src/index.js 或类似的文件中定义。在这个文件里,你可能会看到类似以下代码:

import 'react-native';
import App from './App';

// 可以在此处设置任何全局变量或初始化函数
AppRegistry.registerComponent('MyApp', () => App);

这将注册你的主组件并准备启动应用。

配置文件介绍

配置文件主要包括但不限于上述提到的.eslintrc.js.prettierrc.json 等,它们负责设定编码标准和规范。此外还有:

  • .env: 环境变量文件,可以存放 API 密钥等敏感数据。
  • metro.config.js: Metro 构建打包系统配置,允许自定义打包行为和插件。

对于具体项目的配置细节,建议阅读相应的README.md 和其他文档,因为配置项会因项目不同而有所变化。


以上就是基于 weitieda/bottom-sheet 的基础架构及其关键组成部分概览。希望这份指南能够帮助初学者更好地理解和使用这个优秀的开源项目!

请注意,具体的文件名和路径可能根据实际项目版本有所不同。始终以最新的项目仓库为准。

最后,如果你发现此教程有误或需要更新的地方,欢迎向作者反馈或者直接发起 Pull Request 提交改进意见。感谢支持开源社区!

bottom-sheet⬆️ A SwiftUI view component sliding in from bottom项目地址:https://gitcode.com/gh_mirrors/bo/bottom-sheet

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幸俭卉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值