OpenOOD 开源项目使用教程
1. 项目的目录结构及介绍
OpenOOD 项目的目录结构如下:
OpenOOD/
├── docs/
├── examples/
├── openood/
│ ├── apis/
│ ├── datasets/
│ ├── networks/
│ ├── utils/
│ └── ...
├── scripts/
├── tests/
├── .gitignore
├── CONTRIBUTING.md
├── LICENSE
├── README.md
└── setup.py
目录结构介绍
- docs/: 包含项目的文档文件。
- examples/: 包含使用示例和教程。
- openood/: 核心代码目录,包含API、数据集处理、网络模型等。
- apis/: 提供API接口。
- datasets/: 数据集处理相关代码。
- networks/: 网络模型定义。
- utils/: 工具函数和辅助代码。
- scripts/: 包含一些脚本文件,如安装、测试等。
- tests/: 测试代码目录。
- .gitignore: Git忽略文件配置。
- CONTRIBUTING.md: 贡献指南。
- LICENSE: 项目许可证。
- README.md: 项目介绍和使用说明。
- setup.py: 项目安装脚本。
2. 项目的启动文件介绍
OpenOOD 项目的启动文件通常位于 openood/
目录下。以下是一些关键的启动文件:
- main.py: 主启动文件,负责初始化配置、加载模型和启动训练或评估。
- train.py: 训练脚本,用于训练模型。
- eval.py: 评估脚本,用于评估模型性能。
启动文件介绍
-
main.py:
from openood.apis import train, evaluate from openood.utils import setup_config def main(): config = setup_config() if config['mode'] == 'train': train(config) elif config['mode'] == 'eval': evaluate(config) if __name__ == '__main__': main()
-
train.py:
from openood.apis import Trainer from openood.utils import setup_logger def train(config): logger = setup_logger(config) trainer = Trainer(config, logger) trainer.train()
-
eval.py:
from openood.apis import Evaluator from openood.utils import setup_logger def evaluate(config): logger = setup_logger(config) evaluator = Evaluator(config, logger) evaluator.evaluate()
3. 项目的配置文件介绍
OpenOOD 项目的配置文件通常位于项目根目录下,命名为 config.yaml
或 config.json
。配置文件包含了项目运行所需的所有参数和设置。
配置文件示例
mode: train
dataset:
name: ImageNet
path: /path/to/dataset
model:
name: ResNet50
pretrained: True
training:
batch_size: 32
epochs: 100
optimizer:
name: SGD
lr: 0.01
evaluation:
metrics:
- AUROC
- FPR95
配置文件介绍
- mode: 运行模式,可以是
train
或eval
。 - dataset: 数据集配置,包括数据集名称和路径。
- model: 模型配置,包括模型名称和是否使用预训练模型。
- training: 训练配置,包括批大小、训练轮数和优化器设置。
- evaluation: 评估配置,包括评估指标。
以上是 OpenOOD 开源项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用 OpenOOD 项目。