OpenOOD 开源项目使用教程

OpenOOD 开源项目使用教程

OpenOODBenchmarking Generalized Out-of-Distribution Detection项目地址:https://gitcode.com/gh_mirrors/op/OpenOOD

1. 项目的目录结构及介绍

OpenOOD 项目的目录结构如下:

OpenOOD/
├── docs/
├── examples/
├── openood/
│   ├── apis/
│   ├── datasets/
│   ├── networks/
│   ├── utils/
│   └── ...
├── scripts/
├── tests/
├── .gitignore
├── CONTRIBUTING.md
├── LICENSE
├── README.md
└── setup.py

目录结构介绍

  • docs/: 包含项目的文档文件。
  • examples/: 包含使用示例和教程。
  • openood/: 核心代码目录,包含API、数据集处理、网络模型等。
    • apis/: 提供API接口。
    • datasets/: 数据集处理相关代码。
    • networks/: 网络模型定义。
    • utils/: 工具函数和辅助代码。
  • scripts/: 包含一些脚本文件,如安装、测试等。
  • tests/: 测试代码目录。
  • .gitignore: Git忽略文件配置。
  • CONTRIBUTING.md: 贡献指南。
  • LICENSE: 项目许可证。
  • README.md: 项目介绍和使用说明。
  • setup.py: 项目安装脚本。

2. 项目的启动文件介绍

OpenOOD 项目的启动文件通常位于 openood/ 目录下。以下是一些关键的启动文件:

  • main.py: 主启动文件,负责初始化配置、加载模型和启动训练或评估。
  • train.py: 训练脚本,用于训练模型。
  • eval.py: 评估脚本,用于评估模型性能。

启动文件介绍

  • main.py:

    from openood.apis import train, evaluate
    from openood.utils import setup_config
    
    def main():
        config = setup_config()
        if config['mode'] == 'train':
            train(config)
        elif config['mode'] == 'eval':
            evaluate(config)
    
    if __name__ == '__main__':
        main()
    
  • train.py:

    from openood.apis import Trainer
    from openood.utils import setup_logger
    
    def train(config):
        logger = setup_logger(config)
        trainer = Trainer(config, logger)
        trainer.train()
    
  • eval.py:

    from openood.apis import Evaluator
    from openood.utils import setup_logger
    
    def evaluate(config):
        logger = setup_logger(config)
        evaluator = Evaluator(config, logger)
        evaluator.evaluate()
    

3. 项目的配置文件介绍

OpenOOD 项目的配置文件通常位于项目根目录下,命名为 config.yamlconfig.json。配置文件包含了项目运行所需的所有参数和设置。

配置文件示例

mode: train
dataset:
  name: ImageNet
  path: /path/to/dataset
model:
  name: ResNet50
  pretrained: True
training:
  batch_size: 32
  epochs: 100
  optimizer:
    name: SGD
    lr: 0.01
evaluation:
  metrics:
    - AUROC
    - FPR95

配置文件介绍

  • mode: 运行模式,可以是 traineval
  • dataset: 数据集配置,包括数据集名称和路径。
  • model: 模型配置,包括模型名称和是否使用预训练模型。
  • training: 训练配置,包括批大小、训练轮数和优化器设置。
  • evaluation: 评估配置,包括评估指标。

以上是 OpenOOD 开源项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用 OpenOOD 项目。

OpenOODBenchmarking Generalized Out-of-Distribution Detection项目地址:https://gitcode.com/gh_mirrors/op/OpenOOD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房伟宁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值