多跳密集检索项目(MDR)使用与启动教程

多跳密集检索项目(MDR)使用与启动教程

multihop_dense_retrieval Multi-hop dense retrieval for question answering multihop_dense_retrieval 项目地址: https://gitcode.com/gh_mirrors/mu/multihop_dense_retrieval

1. 项目介绍

多跳密集检索(MDR)是一种简单且通用的密集检索方法,它可以递归地检索支持文本段落,用于回答复杂的开放域问题。本项目提供了代码和预训练的检索模型,这些模型在两个多跳问答数据集(HotpotQA 数据集和 FEVER 事实抽取与验证数据集的多跳子集)上产生了最先进的检索性能。更多关于我们方法的细节,可以在我们的 ICLR 论文 "Answering Complex Open-Domain Questions with Multi-Hop Dense Retrieval" 中找到。

2. 项目快速启动

以下步骤将帮助您快速启动并运行多跳密集检索项目:

首先,安装必要的环境:

conda create --name MDR python=3.6
conda activate MDR
git clone git@github.com:facebookresearch/multihop_dense_retrieval.git
cd multihop_dense_retrieval
bash setup.sh

接下来,下载所需的数据文件和预训练的检索模型:

bash ./scripts/download_hotpot.sh

启动一个简单的演示:

streamlit run scripts/demo.py

3. 应用案例和最佳实践

检索性能评估

要评估检索性能,并保存用于下游问答的 top-k 检索段落链,可以使用以下脚本:

python scripts/eval/eval_mhop_retrieval.py \
data/hotpot/hotpot_qas_val.json \
data/hotpot_index/wiki_index.npy \
data/hotpot_index/wiki_id2doc.json \
models/q_encoder.pt \
--batch-size 100 \
--beam-size 1 \
--topk 1 \
--shared-encoder \
--model-name roberta-base \
--gpu \
--save-path ${SAVE_RETRIEVAL_FOR_QA}

问答性能评估

要评估基于预训练模型的问答性能,可以按照以下步骤操作:

python scripts/train_qa.py \
--do_predict \
--predict_batch_size 200 \
--model_name google/electra-large-discriminator \
--fp16 \
--predict_file data/hotpot/dev_retrieval_top100_sp.json \
--max_seq_len 512 \
--max_q_len 64 \
--init_checkpoint models/qa_electra.pt \
--sp-pred \
--max_ans_len 30 \
--save-prediction hotpot_val_top100.json

4. 典型生态项目

MDR 项目可以作为开放域问答系统的一个重要组成部分,与自然语言处理、知识图谱、机器学习等领域的大量开源项目相结合,构建更加复杂和智能的应用。以下是一些可能的生态项目:

  • 一个集成了 MDR 的问答机器人
  • 一个基于 MDR 的在线学习平台,为学生提供自动解答
  • 一个利用 MDR 改善搜索结果的搜索引擎插件

以上步骤和实践为您提供了开始使用 MDR 项目的坚实基础。根据具体需求,您可以进一步定制和扩展这些步骤。

multihop_dense_retrieval Multi-hop dense retrieval for question answering multihop_dense_retrieval 项目地址: https://gitcode.com/gh_mirrors/mu/multihop_dense_retrieval

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邓越浪Henry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值