ADBench 开源项目教程

ADBench 开源项目教程

ADBenchOfficial Implement of "ADBench: Anomaly Detection Benchmark", NeurIPS 2023.项目地址:https://gitcode.com/gh_mirrors/ad/ADBench

项目介绍

ADBench 是一个用于异常检测的基准测试项目,由上海财经大学和卡内基梅隆大学的研究人员共同开发。该项目旨在提供一个全面的异常检测算法评估平台,支持多种数据集和算法。ADBench 在 NeurIPS 2022 上发布,并已获得超过 600 颗星。

项目快速启动

安装

首先,确保你已经安装了 Python 环境。然后,通过以下命令安装 ADBench:

pip install adbench

下载数据集

使用以下代码从 GitHub 仓库下载数据集:

from adbench.myutils import Utils
utils = Utils()
utils.download_datasets(repo='jihulab')

运行基准测试

以下是一个简单的示例,展示如何运行 ADBench 基准测试:

from adbench.run import RunPipeline

# 运行基准测试
RunPipeline(suffix='example', parallel='unsupervise', realistic_synthetic_mode='local')

应用案例和最佳实践

案例一:评估自定义算法

ADBench 支持用户自定义的异常检测算法。以下是一个示例,展示如何在 ADBench 中添加和评估自定义算法:

from adbench.run import RunPipeline

# 自定义算法
class CustomAlgorithm:
    def fit(self, X):
        # 自定义训练逻辑
        pass

    def predict(self, X):
        # 自定义预测逻辑
        return [0, 1, 0, 1]  # 示例输出

# 运行基准测试
RunPipeline(suffix='custom_algorithm', parallel='unsupervise', realistic_synthetic_mode='local', custom_algorithm=CustomAlgorithm())

最佳实践

  • 数据预处理:确保数据集经过适当的预处理,以提高算法的性能。
  • 参数调优:使用网格搜索或随机搜索对算法参数进行调优,以获得最佳性能。
  • 结果分析:详细分析基准测试结果,以了解算法的优势和不足。

典型生态项目

PyOD

PyOD 是一个用于异常检测的 Python 库,提供了多种异常检测算法的实现。ADBench 与 PyOD 结合使用,可以进一步扩展异常检测的能力。

Scikit-learn

Scikit-learn 是一个广泛使用的机器学习库,提供了丰富的数据处理和模型评估工具。ADBench 可以与 Scikit-learn 结合使用,以提高数据处理和模型评估的效率。

TensorFlow 和 PyTorch

对于深度学习方法,ADBench 可以与 TensorFlow 和 PyTorch 结合使用,以实现更复杂的异常检测模型。

通过以上模块的介绍和示例,您可以快速上手并深入了解 ADBench 开源项目。希望本教程对您有所帮助!

ADBenchOfficial Implement of "ADBench: Anomaly Detection Benchmark", NeurIPS 2023.项目地址:https://gitcode.com/gh_mirrors/ad/ADBench

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霍妲思

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值