TextFooler项目安装与配置指南
1. 项目基础介绍
TextFooler是一个针对文本分类和推理任务的自然语言攻击模型。该项目的目标是探索和展示如何对基于BERT等模型的文本分类和推理系统进行攻击。通过该项目,研究人员可以了解模型对于对抗性样本的脆弱性。
主要编程语言:Python
2. 项目使用的关键技术和框架
- BERT: 项目使用BERT模型作为文本分类和推理的基础模型。
- Counter-fitting: 一种用于生成对抗性样本的方法。
- ESIM (Enhanced Sequential Inference Model): 用于自然语言推理任务的模型框架。
- InferSent: 另一种自然语言推理任务中使用的模型。
3. 项目安装和配置的准备工作与详细步骤
准备工作
-
确保安装了Python 3.x。
-
安装所需的Python库:
pip install -r requirements.txt
-
克隆项目仓库到本地:
git clone https://github.com/jind11/TextFooler.git cd TextFooler
安装步骤
安装ESIM包
进入ESIM目录并运行安装脚本:
cd ESIM
python setup.py install
cd ..
(可选) 预计算余弦相似度
如果需要预计算基于counter-fitting词嵌入的余弦相似度,运行以下命令:
python comp_cos_sim_mat.py [PATH_TO_COUNTER_FITTING_WORD_EMBEDDINGS]
运行文本分类攻击
运行以下脚本来生成针对文本分类的对抗性样本:
python attack_classification.py
对于运行脚本的具体参数,请参考项目中的run_attack_classification.py
示例。
运行自然语言推理攻击
运行以下脚本来生成针对自然语言推理的对抗性样本:
python attack_nli.py
同样,具体的运行参数可以参考run_attack_nli.py
示例。
通过上述步骤,你应该能够成功安装并配置TextFooler项目,开始生成对抗性样本进行模型攻击实验。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考