TextFooler项目安装与配置指南

TextFooler项目安装与配置指南

TextFooler A Model for Natural Language Attack on Text Classification and Inference TextFooler 项目地址: https://gitcode.com/gh_mirrors/te/TextFooler

1. 项目基础介绍

TextFooler是一个针对文本分类和推理任务的自然语言攻击模型。该项目的目标是探索和展示如何对基于BERT等模型的文本分类和推理系统进行攻击。通过该项目,研究人员可以了解模型对于对抗性样本的脆弱性。

主要编程语言:Python

2. 项目使用的关键技术和框架

  • BERT: 项目使用BERT模型作为文本分类和推理的基础模型。
  • Counter-fitting: 一种用于生成对抗性样本的方法。
  • ESIM (Enhanced Sequential Inference Model): 用于自然语言推理任务的模型框架。
  • InferSent: 另一种自然语言推理任务中使用的模型。

3. 项目安装和配置的准备工作与详细步骤

准备工作

  • 确保安装了Python 3.x。

  • 安装所需的Python库:

    pip install -r requirements.txt
    
  • 克隆项目仓库到本地:

    git clone https://github.com/jind11/TextFooler.git
    cd TextFooler
    

安装步骤

安装ESIM包

进入ESIM目录并运行安装脚本:

cd ESIM
python setup.py install
cd ..
(可选) 预计算余弦相似度

如果需要预计算基于counter-fitting词嵌入的余弦相似度,运行以下命令:

python comp_cos_sim_mat.py [PATH_TO_COUNTER_FITTING_WORD_EMBEDDINGS]
运行文本分类攻击

运行以下脚本来生成针对文本分类的对抗性样本:

python attack_classification.py

对于运行脚本的具体参数,请参考项目中的run_attack_classification.py示例。

运行自然语言推理攻击

运行以下脚本来生成针对自然语言推理的对抗性样本:

python attack_nli.py

同样,具体的运行参数可以参考run_attack_nli.py示例。

通过上述步骤,你应该能够成功安装并配置TextFooler项目,开始生成对抗性样本进行模型攻击实验。

TextFooler A Model for Natural Language Attack on Text Classification and Inference TextFooler 项目地址: https://gitcode.com/gh_mirrors/te/TextFooler

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

解银旦Fannie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值