深入解析《Joyful Pandas》:一本值得拥有的Pandas数据处理实战指南
joyful-pandas pandas中文教程 项目地址: https://gitcode.com/gh_mirrors/jo/joyful-pandas
书籍概述
《Joyful Pandas》是由耿远昊编著的一本专注于Python pandas库的数据处理与分析实战教程。全书共325页,内容全面系统,特别适合已经具备Python编程基础并希望使用pandas进行数据处理和分析的数据科学从业者或研究人员。
内容架构
本书采用循序渐进的知识体系设计,分为四个主要部分:
第一部分:基础篇
- Numpy基础:为pandas学习打下坚实基础
- pandas基础:核心数据结构与基本操作
第二部分:核心操作篇
详细讲解pandas四大核心操作:
- 索引操作:高效数据访问方法
- 分组操作:GroupBy机制与应用
- 重塑操作:数据透视与堆叠/解堆叠
- 合并操作:多种数据合并策略
第三部分:数据类型处理篇
深入解析四种特殊数据类型及其处理方法:
- 缺失数据处理:识别、填充与删除策略
- 文本数据处理:字符串操作与正则表达式
- 分类数据处理:类别型变量的高效处理
- 时间序列数据:日期时间操作与重采样
第四部分:进阶应用篇
- 数据观察技巧:探索性数据分析(EDA)
- 特征工程实践:数据预处理与特征构建
- 性能优化方法:提升处理效率的技巧
特色亮点
-
实践导向:全书包含大量精心设计的练习题,每章末尾都有配套练习,帮助读者巩固所学知识。
-
权威认可:本书是pandas官方网站唯一推荐的中文教程,在豆瓣等平台获得9.2分的高分评价。
-
作者背景:作者本人是pandas核心贡献者,参与了1.0到2.0版本几乎所有小版本的开发工作,提交了近30个被官方合并的PR,涵盖bug修复、性能优化和功能实现等多个方面。
-
教学理念:强调"宏观理解+微观实践"的学习方法,通过实际案例帮助读者建立数据处理的整体思维框架。
适合读者
- 已经掌握Python基础语法的学习者
- 需要处理结构化数据的科研人员
- 从事数据分析、机器学习相关工作的从业者
- 希望系统学习pandas库的大学生和自学者
学习建议
- 建议按照章节顺序系统学习,先打好基础再进入高级主题
- 务必完成每章练习题,实践是掌握pandas的关键
- 结合实际项目需求,将书中技巧应用到真实场景中
- 遇到复杂问题时,可参考书中对应章节寻找解决方案
《Joyful Pandas》不仅是一本技术参考书,更是一本能够带领读者深入理解pandas设计哲学和实践方法的优秀教程。通过本书的学习,读者将能够高效地使用pandas解决各类数据处理问题,提升数据分析工作的效率和质量。
joyful-pandas pandas中文教程 项目地址: https://gitcode.com/gh_mirrors/jo/joyful-pandas
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考