raf-schd使用指南

raf-schd使用指南

raf-schdA throttle function that uses requestAnimationFrame to rate limit项目地址:https://gitcode.com/gh_mirrors/ra/raf-schd

项目目录结构及介绍

raf-schd是一个基于requestAnimationFrame(简称 RAF)实现的节流函数库,专注于通过动画帧来限制函数调用频率,从而优化性能。下面是该开源项目的基本目录结构概述:

raf-schd/
├── index.js                # 主入口文件,暴露了raf-schd的核心功能
├── LICENSE                 # 许可证文件,遵循MIT协议
├── README.md               # 项目说明文档,包含了如何使用、安装等关键信息
├── package.json            # 项目元数据文件,定义依赖、脚本命令等
└── src/                    # 源代码目录
    └── ...                  # 包含具体的源码实现文件,未在引用中详细列出
  • index.js 是核心逻辑所在的文件,对外提供了raf-schd的主要功能。
  • src/ 目录中存储着项目的原始开发代码,但具体结构细节未在引用中展开。

项目的启动文件介绍

对于此类库项目,通常没有直接的“启动文件”用于运行一个应用程序。它的使用场景是在其他项目中作为依赖引入,并在需要的地方调用其提供的API。因此,开发者不需要直接启动raf-schd本身,而是通过以下方式将其集成到自己的项目中:

# 使用npm进行安装
npm install raf-schd --save

# 或者使用yarn
yarn add raf-schd

随后,在你的JavaScript代码里,根据环境不同采用相应导入方式:

  • ES6模块

    import rafSchd from 'raf-schd';
    
  • CommonJS

    const rafSchd = require('raf-schd').default;
    

项目的配置文件介绍

主要的配置信息存在于package.json文件中。这个文件包含了项目的名称、版本、作者、许可证信息、依赖项列表以及一些执行脚本命令。例如,它可能有构建或测试前后的脚本,但它主要关注于项目的元数据和自动化任务,而不是应用级别的配置。

由于这是一个简单的库项目,它可能不包含复杂的构建配置文件如.babelrc, .eslintignore等,这些通常是应用级项目为了编译、代码风格检查而使用的。

总结而言,raf-schd的使用不涉及复杂的本地启动或配置步骤,重点在于如何正确地在用户项目中导入并利用其提供的节流功能来优化性能。

raf-schdA throttle function that uses requestAnimationFrame to rate limit项目地址:https://gitcode.com/gh_mirrors/ra/raf-schd

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵇殉嵘Eliza

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值