AI-Scientist 项目使用教程
1. 项目介绍
AI-Scientist 是一个开源项目,旨在开发能够进行科学研究和发现新知识的智能体。该项目通过使用基础模型,如大型语言模型(LLMs),来自动化科学发现的整个过程。AI-Scientist 提供了一套模板,可以帮助用户在NanoGPT、2D Diffusion 和 Grokking 等领域生成创意并进行实验。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统满足以下要求:
- 操作系统:Linux
- 硬件:NVIDIA GPU(支持CUDA)
- 软件依赖:PyTorch
首先,创建一个虚拟环境并激活它:
conda create -n ai_scientist python=3.11
conda activate ai_scientist
然后,安装必要的软件包:
# 安装 pdflatex
sudo apt-get install texlive-full
# 安装 PyPI 要求的包
pip install -r requirements.txt
模型配置
接下来,根据您选择的模型设置相应的环境变量。以下是一些示例:
# OpenAI API
export OPENAI_API_KEY="YOUR KEY HERE"
# Claude Models via Bedrock
export AWS_ACCESS_KEY_ID="YOUR KEY HERE"
export AWS_SECRET_ACCESS_KEY="YOUR SECRET KEY HERE"
export AWS_REGION_NAME="YOUR REGION"
# Claude Models via Vertex AI
export CLOUD_ML_REGION="REGION"
export ANTHROPIC_VERTEX_PROJECT_ID="PROJECT_ID"
export VERTEXAI_LOCATION="REGION"
export VERTEXAI_PROJECT="PROJECT_ID"
# 其他模型API密钥
export DEEPSEEK_API_KEY="YOUR KEY HERE"
export OPENROUTER_API_KEY="YOUR KEY HERE"
export GEMINI_API_KEY="YOUR GEMINI API KEY"
export S2_API_KEY="YOUR KEY HERE"
export OPENALEX_MAIL_ADDRESS="YOUR EMAIL ADDRESS"
运行项目
以NanoGPT模板为例,运行以下命令来启动实验:
cd templates/nanoGPT
python experiment.py --out_dir run_0
python plot.py
3. 应用案例和最佳实践
AI-Scientist 项目可以用于生成各种科学论文的创意。以下是一些案例:
- DualScale Diffusion: 自适应特征平衡的低维生成模型
- Multi-scale Grid Noise Adaptation: 增强低维数据扩散模型
- GAN-Enhanced Diffusion: 提高样本质量和多样性
- DualDiff: 通过双专家去噪增强低维扩散模型模式捕获
- StyleFusion: 字符级语言模型的自适应多风格生成
在运行实验时,建议仔细阅读项目文档,了解不同模板的使用方法和最佳实践。
4. 典型生态项目
AI-Scientist 项目的生态系统中,还包括了以下项目:
- Claude: 一个开源的自然语言处理模型
- Grokking: 用于增强神经网络泛化能力的技术
- Diffusion Models: 用于生成数据的一种深度学习模型
这些项目共同构成了一个强大的科学研究和自动化发现工具集,可以进一步探索和利用。