开源项目 Hunting Queries-Detection Rules 使用教程

开源项目 Hunting Queries-Detection Rules 使用教程

Hunting-Queries-Detection-RulesKQL Queries. Defender For Endpoint and Azure Sentinel Hunting and Detection Queries in KQL. Out of the box KQL queries for: Advanced Hunting, Custom Detection, Analytics Rules & Hunting Rules. 项目地址:https://gitcode.com/gh_mirrors/hu/Hunting-Queries-Detection-Rules

项目介绍

Hunting Queries-Detection Rules 是一个开源项目,旨在帮助安全分析师和研究人员创建和共享用于威胁检测的查询和规则。该项目主要针对安全信息和事件管理(SIEM)系统,如Elasticsearch、Splunk等,提供了一系列预定义的查询和检测规则,以便快速识别潜在的安全威胁。

项目快速启动

克隆项目

首先,你需要将项目克隆到本地:

git clone https://github.com/Bert-JanP/Hunting-Queries-Detection-Rules.git

安装依赖

进入项目目录并安装必要的依赖:

cd Hunting-Queries-Detection-Rules
pip install -r requirements.txt

运行示例查询

项目中包含了一些示例查询,你可以直接运行这些查询来测试系统:

python run_query.py --query example_query.json

应用案例和最佳实践

应用案例

  1. 恶意软件检测:使用项目中的查询规则来检测网络中的恶意软件活动。
  2. 异常登录检测:通过分析登录日志,使用预定义的规则来识别异常登录行为。
  3. 数据泄露检测:监控网络流量,使用查询规则来发现潜在的数据泄露事件。

最佳实践

  1. 定期更新规则:安全威胁不断演变,定期更新和审查查询规则是必要的。
  2. 结合其他工具:将这些查询规则与其他安全工具(如防火墙、入侵检测系统)结合使用,可以提高整体的安全性。
  3. 社区贡献:鼓励团队成员和社区贡献新的查询和规则,以丰富项目内容。

典型生态项目

  1. Elasticsearch:一个开源的搜索和分析引擎,常用于日志和事件数据的存储和分析。
  2. Splunk:一个广泛使用的安全信息和事件管理(SIEM)平台,支持复杂的事件分析和报告。
  3. Sigma:一个开源的规则格式,用于编写通用的威胁检测规则,可以与多个SIEM系统集成。

通过结合这些生态项目,Hunting Queries-Detection Rules 可以更好地融入现有的安全基础设施,提供更强大的威胁检测能力。

Hunting-Queries-Detection-RulesKQL Queries. Defender For Endpoint and Azure Sentinel Hunting and Detection Queries in KQL. Out of the box KQL queries for: Advanced Hunting, Custom Detection, Analytics Rules & Hunting Rules. 项目地址:https://gitcode.com/gh_mirrors/hu/Hunting-Queries-Detection-Rules

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胡霆圣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值