rstWeb 开源项目教程
项目介绍
rstWeb 是一个基于浏览器的开源注释工具,专门用于在修辞结构理论(Rhetorical Structure Theory, RST)中进行话语分析。它旨在支持协作式的在线注释项目,用户只需使用网页浏览器即可参与,无需安装任何软件。rstWeb 支持多种功能,包括导入和导出 rs3 文件、支持多个注释版本的文档、自动下载分析截图等。
项目快速启动
本地安装
rstWeb 可以在浏览器中直接运行,但如果你想在本地运行一个模拟的 Web 服务器,可以按照以下步骤操作:
-
安装 Python:
- 对于 Mac 用户,Python 通常已经预装,无需额外操作。
- 对于 Windows 用户,下载并安装 Python 从 Python 官方网站。
-
安装必要的 Python 包:
- 对于 Mac 用户,首先安装 pip:
sudo easy_install pip sudo pip install cherrypy sudo pip install selenium
- 对于 Windows 用户,直接在命令行中运行:
pip install cherrypy pip install selenium
- 对于 Mac 用户,首先安装 pip:
-
下载 rstWeb 项目:
- 从 GitHub 仓库下载 rstWeb 项目文件到本地目录。
-
运行本地服务器:
- 对于 Mac/Linux 用户,运行以下脚本:
./rstweb_local.sh
- 对于 Windows 用户,运行以下脚本:
rstweb_local.bat
- 对于 Mac/Linux 用户,运行以下脚本:
-
访问 rstWeb:
- 打开浏览器,访问
http://127.0.0.1:8080/
。
- 打开浏览器,访问
服务器安装
如果你需要在服务器上运行 rstWeb,可以按照以下步骤操作:
-
安装 Python:
- 确保服务器上安装了 Python 2.6 或更高版本。
-
下载 rstWeb 项目:
- 将 rstWeb 项目文件解压到服务器上的指定目录。
-
配置 Web 服务器:
- 确保 Web 服务器对该目录有读、写和执行权限。
- 确保安装了 Selenium(通过 pip 安装),否则截图功能将无法使用。
-
启动服务器:
- 使用服务器上的 Web 服务器配置文件启动 rstWeb。
应用案例和最佳实践
rstWeb 广泛应用于学术研究和教育领域,特别是在修辞结构理论(RST)的注释和分析中。以下是一些应用案例和最佳实践:
- 学术研究:rstWeb 被用于分析和注释大量文本数据,帮助研究人员理解文本的修辞结构。
- 教育培训:rstWeb 被用于语言学课程中,帮助学生理解和实践 RST 理论。
- 协作项目:多个研究团队使用 rstWeb 进行协作注释项目,共享和比较注释结果。
典型生态项目
rstWeb 作为一个开源项目,与其他相关项目和工具形成了良好的生态系统。以下是一些典型的生态项目:
- RSTTool:一个用于 RST 分析的图形化工具,与 rstWeb 兼容,可以导入和导出 rs3 文件。
- GUM Corpus:一个包含 RST 注释的大型语料库,rstWeb 可以用于注释和分析该语料库中的文本。
- jsPlumb:一个用于可视化连接的 JavaScript 库,rstWeb 使用该库来实现注释界面的连接功能。
通过这些生态项目,rstWeb 能够更好地服务于学术研究和教育培训,提供更丰富的功能和更广泛的应用场景。