EdgeTAM:边缘设备上的跟踪神器

EdgeTAM:边缘设备上的跟踪神器

EdgeTAM [CVPR 2025] Official PyTorch implementation of "EdgeTAM: On-Device Track Anything Model" EdgeTAM 项目地址: https://gitcode.com/gh_mirrors/ed/EdgeTAM

项目介绍

EdgeTAM 是一个在设备上可执行的 SAM 2 的变体,用于可提示的视频分割和跟踪。它比 SAM 2 运行速度快 22 倍,在 iPhone 15 Pro Max 上无量化时达到 16 FPS。

项目技术分析

EdgeTAM 采用了 SAM 2 的架构,并在其基础上进行了优化,使其更适合在边缘设备上运行。EdgeTAM 采用了轻量级的网络结构,并使用了深度可分离卷积等优化技术,从而在保持性能的同时,大幅降低了模型的计算量。

项目及技术应用场景

EdgeTAM 可用于各种视频分割和跟踪任务,例如:

  • 视频监控:EdgeTAM 可用于实时跟踪监控视频中的目标,例如行人、车辆等。
  • 智能交通:EdgeTAM 可用于跟踪交通视频中的车辆,并提供车辆计数、流量分析等信息。
  • 体育分析:EdgeTAM 可用于分析体育视频中的运动员动作,并提供运动员跟踪、动作识别等信息。
  • 人机交互:EdgeTAM 可用于实现基于视频的人机交互应用,例如手势识别、身体姿态估计等。

项目特点

  • 速度快:EdgeTAM 比 SAM 2 运行速度快 22 倍,在 iPhone 15 Pro Max 上无量化时达到 16 FPS。
  • 高精度:EdgeTAM 在多个视频分割和跟踪数据集上取得了优异的性能。
  • 易用性:EdgeTAM 提供了易于使用的 Python API,方便用户进行开发和部署。
  • 开源:EdgeTAM 是一个开源项目,用户可以免费使用和修改其代码。

项目性能

EdgeTAM 在多个视频分割和跟踪数据集上取得了优异的性能,例如:

  • Promptable Video Segmentation (PVS):EdgeTAM 在 9 个数据集上的零样本 PVS 准确率达到了 70.0%。
  • Video Object Segmentation (VOS):EdgeTAM 在多个 VOS 数据集上取得了优异的性能,例如在 YTVOS 2019 val 数据集上达到了 86.2% 的 G 准确率。
  • Segment Anything (SA):EdgeTAM 在 SA-23 数据集上取得了 55.5% 的 1 (5) 点击 mIoU 准确率,并达到了 40.4 FPS 的实时处理速度。

总结

EdgeTAM 是一个功能强大、性能优异的视频分割和跟踪工具,它可以帮助用户轻松地完成各种视频分析任务。EdgeTAM 的开源特性使其更加易于使用和推广,相信在不久的将来,EdgeTAM 会成为视频分割和跟踪领域的标准工具之一。

EdgeTAM [CVPR 2025] Official PyTorch implementation of "EdgeTAM: On-Device Track Anything Model" EdgeTAM 项目地址: https://gitcode.com/gh_mirrors/ed/EdgeTAM

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁俪晟Gertrude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值