ArduinoFFT 项目教程
项目地址:https://gitcode.com/gh_mirrors/ar/arduinoFFT
项目介绍
ArduinoFFT 是一个用于在 Arduino 框架上实现浮点快速傅里叶变换(FFT)计算的库。该库由 Enrique Condes 开发,主要用于数据处理。通过 ArduinoFFT,用户可以计算信号的频谱,从而分析信号的频率成分。
项目快速启动
安装
- 打开 Arduino IDE。
- 进入
项目
->加载库
->添加 .ZIP 库...
。 - 选择下载的
arduinoFFT-x.x.x.zip
文件。
示例代码
以下是一个简单的示例代码,展示如何在 Arduino 上使用 ArduinoFFT 库进行 FFT 计算:
#include <arduinoFFT.h>
#define SAMPLES 128 // 采样点数
#define SAMPLING_FREQUENCY 1000 // 采样频率
arduinoFFT FFT = arduinoFFT();
double vReal[SAMPLES];
double vImag[SAMPLES];
void setup() {
Serial.begin(115200);
}
void loop() {
// 采集数据
for (int i = 0; i < SAMPLES; i++) {
vReal[i] = analogRead(A0);
vImag[i] = 0;
delay(1000 / SAMPLING_FREQUENCY);
}
// 执行 FFT
FFT.Windowing(vReal, SAMPLES, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
FFT.Compute(vReal, vImag, SAMPLES, FFT_FORWARD);
FFT.ComplexToMagnitude(vReal, vImag, SAMPLES);
// 输出结果
for (int i = 0; i < SAMPLES / 2; i++) {
Serial.println(vReal[i]);
}
delay(1000);
}
应用案例和最佳实践
应用案例
- 音频分析:使用 ArduinoFFT 库可以分析音频信号的频率成分,从而实现音频频谱显示。
- 振动分析:在机械设备中,通过分析振动信号的频率成分,可以检测设备的运行状态。
最佳实践
- 优化采样频率:根据实际应用需求选择合适的采样频率,以确保 FFT 计算的准确性。
- 数据预处理:在执行 FFT 之前,对数据进行适当的预处理(如去噪、加窗等),可以提高分析结果的准确性。
典型生态项目
FastLED
FastLED 是一个易于使用的库,用于处理 NeoPixel LED(以及其他类似芯片组,如 WS2812B)。它可以与 ArduinoFFT 结合使用,实现音乐可视化效果。
LedMatrix
LedMatrix 库与 FastLED 库配合使用,构建由 FastLED 库使用的数组,并绘制图形。通过结合 ArduinoFFT,可以在 LED 矩阵上显示音频频谱。
fix_fft
fix_fft 库用于执行快速傅里叶变换,将正弦波从时域转换到频域。它接受一个包含 analogRead()
读取值的数组作为输入,输出一系列复数。通过使用 FFT 的输出数组的前 N/2 个值,可以绘制音频的功率谱密度。
通过这些生态项目的结合使用,可以实现更加复杂和有趣的应用,如音乐可视化、振动分析等。
arduinoFFT Fast Fourier Transform for Arduino 项目地址: https://gitcode.com/gh_mirrors/ar/arduinoFFT
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考