Cirq量子计算框架中的直接保真度估计(DFE)技术详解

Cirq量子计算框架中的直接保真度估计(DFE)技术详解

Cirq A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits. Cirq 项目地址: https://gitcode.com/gh_mirrors/ci/Cirq

直接保真度估计概述

直接保真度估计(Direct Fidelity Estimation, DFE)是一种无需完整量子态层析就能评估量子态保真度的高效方法。在Cirq量子计算框架中,DFE算法通过巧妙设计测量方案,显著减少了评估量子态质量所需的测量次数。

DFE算法原理

保真度的数学定义为: $$F = \mathrm{Tr}(\hat{\rho}\hat{\sigma})$$ 其中$\hat{\rho}$是理论纯态,$\hat{\sigma}$是实际量子态。

DFE算法的核心思想是将保真度表达为Pauli算符期望值的加权和:

  1. 首先将保真度重写为: $$F= \sum_i \frac{\rho_i \sigma_i}{d}$$ 其中$d=4^n$(n为量子比特数),$\rho_i = \mathrm{Tr}(\hat{\rho}P_i)$,$\sigma_i = \mathrm{Tr}(\hat{\sigma}P_i)$

  2. 进一步变形为: $$F= \sum_i Pr(i)\frac{\sigma_i}{\rho_i}$$ 其中$Pr(i) = \frac{\rho_i^2}{d}$构成概率分布

Cirq中的DFE实现

基本使用流程

在Cirq中使用DFE非常简单:

  1. 首先定义量子电路:
qubits = cirq.LineQubit.range(3)
circuit = cirq.Circuit(
    cirq.CNOT(qubits[0], qubits[2]),
    cirq.Z(qubits[0]),
    cirq.H(qubits[2]),
    cirq.CNOT(qubits[2], qubits[1]),
)
  1. 创建采样器(可以是模拟器或真实硬件):
noise = cirq.ConstantQubitNoiseModel(cirq.depolarize(0.1))
sampler = cirq.DensityMatrixSimulator(noise=noise)
  1. 运行DFE估计:
estimated_fidelity, intermediate_results = dfe.direct_fidelity_estimation(
    circuit,
    qubits,
    sampler,
    n_measured_operators=None,
    samples_per_term=0,
)

Clifford电路的优化处理

Cirq的DFE实现会自动检测电路是否为Clifford电路,并采用优化策略:

  • 对于n量子比特的Clifford电路,只有$2^n$个Pauli算符的$Pr(i)$非零
  • 这些算符具有等概率$Pr(i) = \frac{1}{2^n}$
  • 这种特性显著减少了需要测量的Pauli算符数量

可以通过检查中间结果验证这一点:

for pauli_trace in intermediate_results.pauli_traces:
    print('Probability %.3f\tPauli: %s' % (pauli_trace.Pr_i, pauli_trace.P_i))

参数配置说明

  1. n_measured_operators参数:

    • None:测量所有相关Pauli算符
    • 整数:随机采样指定数量的Pauli算符
    • 对于大系统,设置此参数可控制测量复杂度
  2. samples_per_term参数:

    • 0:使用密集矩阵模拟器
    • 正整数:每个Pauli算符的测量次数
    • 在使用真实硬件采样器时需要设置

方差分析与误差控制

对于Clifford电路,DFE估计的方差有明确上界:

$$\mathrm{Var}[\hat{F}] \leq \frac{(1-F)F}{N}$$

其中N是采样次数。由此可得标准差上界:

$$\mathrm{StdDev}[\hat{F}] \leq \frac{1}{2\sqrt{N}}$$

这一结果为实验设计提供了理论指导,可以根据所需的精度确定必要的采样次数。

实际应用建议

  1. 对于中小规模Clifford电路,建议使用完整测量(n_measured_operators=None)以获得精确结果

  2. 对于大规模系统:

    • 设置合理的n_measured_operators值平衡精度与效率
    • 根据误差上界公式确定采样次数
  3. 混合使用模拟器和硬件:

    • 开发阶段使用模拟器验证(samples_per_term=0)
    • 实际部署时设置适当的samples_per_term

Cirq的DFE实现为量子态质量评估提供了高效工具,特别适合中等规模量子系统的性能表征和噪声分析。通过合理配置参数,可以在精度和效率之间取得良好平衡。

Cirq A python framework for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits. Cirq 项目地址: https://gitcode.com/gh_mirrors/ci/Cirq

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岑魁融Justine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值