MSMARCO:引领机器阅读理解与对话搜索的新时代

MSMARCO:引领机器阅读理解与对话搜索的新时代

MSMARCO-Conversational-Search Truly Conversational Search is the next logic step in the journey to generate intelligent and useful AI. To understand what this may mean, researchers have voiced a continuous desire to study how people currently converse with search engines. Traditionally, the desire to produce such a comprehensive dataset has been limited because those who have this data (Search Engines) have a responsibility to their users to maintain their privacy and cannot share the data publicly in a way that upholds the trusts users have in the Search Engines. Given these two powerful forces we believe we have a dataset and paradigm that meets both sets of needs: A artificial public dataset that approximates the true data and an ability to evaluate model performance on the real user behavior. What this means is we released a public dataset which is generated by creating artificial sessions using embedding similarity and will test on the original data. To say this again: we are not releasing any private user data but are releasing what we believe to be a good representation of true user interactions. MSMARCO-Conversational-Search 项目地址: https://gitcode.com/gh_mirrors/ms/MSMARCO-Conversational-Search

项目介绍

MSMARCO(Microsoft Machine Reading Comprehension)是由微软基于Bing搜索技术和数据构建的一系列数据集。该项目旨在推动机器阅读理解、问答系统、段落排序、关键短语提取以及对话搜索等领域的研究。自2016年首次发布以来,MSMARCO已经发展成为一个包含超过100万条真实查询的大型数据集,这些查询均来自Bing的匿名日志。

MSMARCO不仅限于问答任务,还扩展到了与搜索相关的各种问题。通过提供真实的问题、文档和人工生成的答案,MSMARCO为研究人员提供了一个强大的平台,用于训练和评估复杂的机器学习系统。

项目技术分析

MSMARCO的核心技术优势在于其数据的真实性和多样性。所有问题均来自真实的用户查询,文档则来自完整的网页内容,这使得数据集具有极高的实用价值。此外,MSMARCO还提供了人工生成的答案,这些答案不仅准确,而且格式良好,适用于智能助手等应用场景。

在对话搜索方面,MSMARCO通过生成近似真实用户行为的模拟会话,解决了隐私保护和数据公开之间的矛盾。通过使用嵌入相似性和近似最近邻索引(ANNOY),MSMARCO能够生成高质量的对话会话,这些会话既反映了真实用户的行为,又避免了直接公开敏感数据。

项目及技术应用场景

MSMARCO的应用场景非常广泛,涵盖了多个领域:

  • 机器阅读理解:适用于训练和评估机器阅读理解模型,提升模型在真实场景中的表现。
  • 问答系统:为构建智能问答系统提供丰富的数据支持,帮助系统更好地理解和回答用户的问题。
  • 对话搜索:通过模拟真实用户的对话行为,帮助研究人员开发更智能、更自然的对话搜索系统。
  • 关键短语提取:适用于关键短语提取任务,提升信息检索和文本分析的准确性。

项目特点

MSMARCO具有以下显著特点:

  • 真实性:所有数据均来自真实的用户查询和文档,确保了数据的高质量和高实用性。
  • 多样性:涵盖了多种任务类型,包括问答、段落排序、关键短语提取和对话搜索,满足不同研究需求。
  • 人工标注:提供了人工生成的答案和评估,确保了数据的准确性和可用性。
  • 大规模:包含超过100万条查询,足以支持复杂系统的训练和评估。
  • 隐私保护:通过生成模拟会话,既保留了真实用户行为的特点,又避免了直接公开敏感数据。

MSMARCO不仅是一个数据集,更是一个推动人工智能技术发展的强大平台。无论你是研究人员、开发者还是企业用户,MSMARCO都能为你提供丰富的资源和工具,帮助你在机器阅读理解和对话搜索领域取得突破。立即访问msmarco.org,下载数据集,开启你的AI探索之旅!

MSMARCO-Conversational-Search Truly Conversational Search is the next logic step in the journey to generate intelligent and useful AI. To understand what this may mean, researchers have voiced a continuous desire to study how people currently converse with search engines. Traditionally, the desire to produce such a comprehensive dataset has been limited because those who have this data (Search Engines) have a responsibility to their users to maintain their privacy and cannot share the data publicly in a way that upholds the trusts users have in the Search Engines. Given these two powerful forces we believe we have a dataset and paradigm that meets both sets of needs: A artificial public dataset that approximates the true data and an ability to evaluate model performance on the real user behavior. What this means is we released a public dataset which is generated by creating artificial sessions using embedding similarity and will test on the original data. To say this again: we are not releasing any private user data but are releasing what we believe to be a good representation of true user interactions. MSMARCO-Conversational-Search 项目地址: https://gitcode.com/gh_mirrors/ms/MSMARCO-Conversational-Search

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仰书唯Elise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值