GeoInfoNet 开源项目安装与使用指南
GeoInfoNet 项目地址: https://gitcode.com/gh_mirrors/ge/GeoInfoNet
1. 目录结构及介绍
GeoInfoNet 是一个基于地理信息驱动的方法,用于远程感测中的云雪检测。该项目在 GitHub 上托管,拥有以下主要的目录结构:
- /: 主根目录,包含整个项目的入口。
LICENSE
: 许可证文件,遵循 Apache-2.0 许可协议。README.md
: 项目概述和快速入门指导。algorithm_flow.png
: 方法流程图,展示了 GeoInfoNet 的架构概览。code/
: 包含主要的代码实现,下面可能有子目录如dataset
,network
,test
,train
, 和util
等,分别对应不同的功能模块。models/
: 存放预训练模型文件,用户需自行下载放置于此处。train/
: 训练相关脚本和配置文件。test/
: 测试相关的脚本和配置文件。
2. 项目启动文件介绍
GeoInfoNet 的运行不直接涉及单一的“启动文件”,而是通过命令行执行特定的Python脚本来进行训练或测试。核心操作分为两部分:
-
训练模型: 用户需修改位于
train/train_levir_cloud_snow_dataset_version3_withdem.txt
中的路径,替换/YOUR_DATASET_PATH/
到实际数据集路径,之后通过命令行进入train
目录并运行:python3 train_gin.py
-
测试模型: 类似地,先在
test/test_levir_cloud_snow_dataset_version3_withdem.txt
修改数据集路径,接着在test
目录下运行:python3 test_gin.py
这两步是通过Python脚本来控制项目的启动和运行逻辑,并非传统意义上的单一启动文件。
3. 项目的配置文件介绍
配置主要体现在两个方面:
训练配置
- train_levir_cloud_snow_dataset_version3_withdem.txt: 这个文本文件作为训练时的重要配置,用户需要指定数据集的绝对路径以及其他可能需要调整的参数(虽未详细列出,但通常包括批次大小、学习率等)。
测试配置
- test_levir_cloud_snow_dataset_version3_withdem.txt: 同样是通过文本形式的配置,主要是指定了用于测试的数据集路径和其他特定设置。这个配置确保了用户可以指向正确的数据来评估模型性能。
为了自定义训练或测试过程,用户需细心编辑这两个配置文件,以匹配自己的环境和需求。请注意,在进行任何修改前彻底阅读项目文档,理解每个配置项的作用至关重要。
此指南提供了对 GeoInfoNet 项目基本框架的简介,具体操作还需依据项目仓库内的最新说明进行。记得获取必要的依赖项,并遵循项目页面上提供的详细步骤来正确搭建你的开发或测试环境。
GeoInfoNet 项目地址: https://gitcode.com/gh_mirrors/ge/GeoInfoNet