多层感知机(MLP)的实现与理解——基于d2l-ai项目

多层感知机(MLP)的实现与理解——基于d2l-ai项目

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

多层感知机(Multilayer Perceptron, MLP)是深度学习中最基础的神经网络模型之一。本文将基于d2l-ai项目中的实现,详细讲解MLP的原理和实现方式,帮助读者深入理解这一重要模型。

多层感知机概述

多层感知机是在单层感知机基础上发展而来的神经网络模型,它通过引入隐藏层(hidden layer)和激活函数(activation function)来解决单层感知机无法处理非线性可分问题这一局限性。

一个典型的MLP由以下几部分组成:

  1. 输入层:接收原始数据
  2. 隐藏层:进行非线性变换
  3. 输出层:产生最终预测结果

从零开始实现MLP

1. 模型参数初始化

在实现MLP时,我们需要为每一层初始化权重矩阵和偏置向量。以Fashion-MNIST数据集为例,输入是28×28=784像素的图像,输出是10个类别。

class MLPScratch(d2l.Classifier):
    def __init__(self, num_inputs, num_outputs, num_hiddens, lr, sigma=0.01):
        super().__init__()
        self.save_hyperparameters()
        # 第一层参数
        self.W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens) * sigma
        self.b1 = nn.Parameter(torch.zeros(num_hiddens))
        # 第二层参数
        self.W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs) * sigma
        self.b2 = nn.Parameter(torch.zeros(num_outputs))

这里我们使用较小的标准差(0.01)初始化权重,以避免梯度爆炸或消失问题。偏置则初始化为零。

2. ReLU激活函数实现

ReLU(Rectified Linear Unit)是最常用的激活函数之一,其数学表达式为ReLU(x) = max(0, x)。我们手动实现它:

def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)

ReLU函数的优势在于计算简单且能有效缓解梯度消失问题。

3. 前向传播实现

前向传播过程包括以下步骤:

  1. 将输入数据展平
  2. 第一层线性变换后应用ReLU激活
  3. 第二层线性变换得到输出
@d2l.add_to_class(MLPScratch)
def forward(self, X):
    X = X.reshape((-1, self.num_inputs))  # 展平输入
    H = relu(X @ self.W1 + self.b1)      # 第一层变换+激活
    return H @ self.W2 + self.b2          # 第二层变换

4. 训练过程

MLP的训练过程与softmax回归类似,使用交叉熵损失函数和随机梯度下降优化:

model = MLPScratch(num_inputs=784, num_outputs=10, num_hiddens=256, lr=0.1)
data = d2l.FashionMNIST(batch_size=256)
trainer = d2l.Trainer(max_epochs=10)
trainer.fit(model, data)

使用高级API简洁实现

现代深度学习框架提供了更简洁的实现方式:

1. 使用Sequential容器

我们可以使用框架提供的Sequential容器来简化网络定义:

class MLP(d2l.Classifier):
    def __init__(self, num_outputs, num_hiddens, lr):
        super().__init__()
        self.save_hyperparameters()
        self.net = nn.Sequential(
            nn.Flatten(),
            nn.Linear(784, num_hiddens),
            nn.ReLU(),
            nn.Linear(num_hiddens, num_outputs)
        )

这种方式更加模块化,便于扩展和修改网络结构。

2. 训练过程

训练过程与从零开始实现完全一致,体现了模块化设计的优势:

model = MLP(num_outputs=10, num_hiddens=256, lr=0.1)
trainer.fit(model, data)

关键知识点总结

  1. 参数初始化:合适的初始化对训练至关重要,通常使用小随机数初始化权重,零初始化偏置。

  2. 激活函数:ReLU是最常用的激活函数,解决了梯度消失问题且计算高效。

  3. 网络深度与宽度:增加隐藏层数量和每层神经元数量可以提高模型表达能力,但也可能带来过拟合。

  4. 框架优势:使用深度学习框架可以简化实现,提高开发效率,并利用硬件加速。

实践建议

  1. 超参数调优:尝试不同隐藏层大小、学习率和训练轮数,观察对模型性能的影响。

  2. 网络深度实验:添加更多隐藏层,研究深度对模型性能的影响。

  3. 激活函数比较:尝试Sigmoid、Tanh等其他激活函数,与ReLU进行对比。

  4. 性能分析:比较不同实现方式的运行效率,理解框架优化的价值。

通过本文的讲解和实验,读者应该能够掌握MLP的基本原理和实现方法,为后续学习更复杂的神经网络模型打下坚实基础。

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宫萍润

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值