vLabeler 开源语音标注应用指南
项目地址:https://gitcode.com/gh_mirrors/vl/vlabeler
项目介绍
vLabeler 是一款致力于打造现代无缝的UI/UX体验的开源语音标注工具。它设计用于满足多样化的语音处理需求,特别是对于那些寻求自定义标签流程的用户。vLabeler 支持多种工作场景,包括UTAU音素编辑、音频标签处理等,提供内置的标签器来适应不同项目的需求,如UTAU歌手标签编辑、适用于NNSVS/ENUNU等的音频标签管理。
项目快速启动
在开始之前,请确保您的系统已安装JDK 17或更高版本。接下来,遵循以下步骤来快速启动vLabeler:
# 克隆项目到本地
git clone https://github.com/sdercolin/vlabeler.git
# 进入项目目录
cd vlabeler
# 构建项目并创建可执行应用(适用于当前操作系统)
./gradlew createDistributable
构建完成后,会在指定的输出目录中生成可执行文件,您可以运行这个应用开始新的项目或加载现有数据进行标注。
应用案例和最佳实践
UTAU OTO 编辑
对于专注于UTAU的用户,推荐使用UTAU oto labeler
处理单个oto.ini
文件,或者使用UTAU singer labeler
批量编辑同一歌手下的多个oto.ini
文件。最佳实践是设置正确的“Sample Directory”,即歌手根目录,保证与角色关联的文本文件一同管理。
音频标签处理
当涉及NNSVS或ENUNU等项目时,使用能够处理多个标签文件的内置标签器。确保你的文件结构清晰,例如将所有相关wav
和lab
文件正确组织,并利用vLabeler的灵活性配置项目结构以提高工作效率。
典型生态项目
虽然vLabeler本身作为一个独立的应用程序,其生态并不直接指向其他特定的开源项目,但它的强大在于兼容性和灵活性,可以轻松集成进各种语音处理的流水线中,比如结合Praat的TextGrid处理库进行更复杂的语音分析。开发者和研究者可以通过编写自定义标签器扩展vLabeler的功能,使其适配于特定的语音识别、合成、或声学特征提取项目。
通过上述指南,您应该已经具备了快速上手和有效利用vLabeler进行语音标注的能力。无论是处理个人的语音资料,还是在团队项目中整合语音标签工作流,vLabeler都是一个值得尝试的高效工具。
vlabeler Open source voice labeling application 项目地址: https://gitcode.com/gh_mirrors/vl/vlabeler