QMOF:量子化学性质数据库,助力材料发现
项目介绍
QMOF Database(量子MOF数据库)是一个公开的量子化学性质数据集,包含了20,000多个金属-有机框架(MOFs)和配位聚合物的性质。这些数据是通过高效率的周期性密度泛函理论(DFT)计算得出的,所有的MOFs均经过DFT优化,来源于多种母体数据库,包括实验性和假设性MOF数据库。
项目技术分析
QMOF Database 的核心在于利用高效率的DFT计算来优化MOFs的几何结构、能量、原子电荷、键级、自旋密度、磁矩、带隙、电荷密度和态密度等量子化学性质。这使得QMOF Database成为了一个强大的工具,可以用于快速筛选和识别具有特定性能的MOFs,从而加速新材料的发现过程。
数据获取
用户可以通过以下链接下载QMOF Database的数据,包括DFT优化后的几何结构、能量、部分原子电荷等信息,以及原始的VASP文件:
此外,用户还可以通过以下链接互动式地探索数据集:
更新记录
项目的更新记录可以在更新日志中查看。
项目及技术应用场景
QMOF Database的应用场景广泛,尤其在材料科学和化学领域。以下是几个主要的应用场景:
- 材料筛选:研究人员可以通过QMOF Database快速筛选出具有特定量子化学性质的MOFs,从而减少实验筛选的工作量。
- 性能预测:通过分析数据库中的数据,可以预测MOFs在不同条件下的性能,如催化性能、气体吸附能力等。
- 新材料设计:QMOF Database为新材料的设计提供了丰富的量子化学数据基础,有助于科学家们设计出具有更好性能的新MOFs。
项目特点
QMOF Database具有以下显著特点:
- 数据全面:包含20,000多个MOFs的量子化学性质,为用户提供了广泛的选择。
- 计算优化:所有数据均经过DFT优化,确保了结果的准确性。
- 来源多样:数据来源于多种母体数据库,涵盖了实验性和假设性的MOFs。
- 开放获取:遵循CC BY 4.0许可证,用户可以自由地复制、分享和改编数据,只需给予适当的归属和标记任何修改。
总结而言,QMOF Database是一个功能强大、应用广泛的量子化学性质数据库,它为材料科学领域的研究人员提供了一种高效、准确的新材料发现方法。通过利用QMOF Database,研究人员可以更快速地筛选和设计出具有理想性能的MOFs,推动材料科学的发展。