开源项目教程:构建简易杀毒软件 - antivirus_demo

开源项目教程:构建简易杀毒软件 - antivirus_demo

antivirus_demo Antivirus Demo for Fresh Machine Learning #7 antivirus_demo 项目地址: https://gitcode.com/gh_mirrors/an/antivirus_demo

一、项目目录结构及介绍

此开源项目antivirus_demo位于GitHub上,旨在通过机器学习技术训练一个分类器以识别PE(Portable Executable)文件是否恶意或合法。以下是项目的主要目录结构及其内容概览:

antivirus_demo/
├── classifier.py     # 包含用于分类的核心算法实现
├── gitignore         # 忽略列表,指定不需要纳入版本控制的文件类型
├── LICENSE           # 项目使用的MIT许可协议
├── README.md         # 项目说明文档
├── checkmanalyzer.py # 分析特定PE文件并给出判断结果的脚本
├── checkpe.py        # 主要执行程序,输入PE文件路径进行检测
├── data.csv          # 训练数据集,包含PE文件特征
├── generatedata.py   # 可能用于数据生成或预处理的数据处理脚本
├── learning.py       # 训练模型的脚本,用于创建和训练分类器
└── [其他相关代码和数据文件]...

二、项目的启动文件介绍

learning.py

这个是项目的训练脚本,你需要首先运行它来训练模型。通过分析data.csv中的数据,它尝试多种分类算法,并比较它们的表现,最后选择最佳算法来构建预测模型。只需在命令行输入以下命令即可开始训练过程:

python learning.py

checkpe.py

训练完成后,使用checkpe.py脚本来检测单个PE文件的恶意性。提供你想要检测的PE文件路径作为参数,它将返回文件是否被标记为“恶意”或“合法”。

python checkpe.py YOUR_PE_FILE_PATH

三、项目的配置文件介绍

该项目并未明确列出传统意义上的配置文件,如.ini.json等,其配置主要是通过直接修改脚本(如learning.pycheckpe.py)中的参数或直接在运行时传递参数(例如PE文件路径)来实现的。不过,gitignore可以视为一种特殊的配置,它定义了哪些类型的文件不应被Git跟踪。

总结而言,本项目简单直观,主要通过两个关键脚本来操作:训练模型和使用模型进行检测,无需复杂的配置过程。确保已安装必要的Python库后,即可轻松地开始你的简易杀毒软件之旅。

antivirus_demo Antivirus Demo for Fresh Machine Learning #7 antivirus_demo 项目地址: https://gitcode.com/gh_mirrors/an/antivirus_demo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

包椒浩Leith

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值