NOCS_CVPR2019 项目使用教程

NOCS_CVPR2019 项目使用教程

NOCS_CVPR2019 [CVPR2019 Oral] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation on Python3, Tensorflow, and Keras NOCS_CVPR2019 项目地址: https://gitcode.com/gh_mirrors/no/NOCS_CVPR2019

1. 项目介绍

NOCS_CVPR2019 是一个用于类别级别 6D 对象姿态和尺寸估计的开源项目,由斯坦福大学和谷歌等机构的研究人员开发。该项目在 CVPR 2019 上获得了口头报告,并提供了一个基于 Python3、Tensorflow 和 Keras 的实现。

主要功能

  • 类别级别 6D 对象姿态和尺寸估计:通过归一化对象坐标空间(NOCS)实现对不同类别对象的姿态和尺寸估计。
  • 训练和评估代码:提供了训练模型和评估模型性能的代码。
  • 预训练权重:提供了在 CAMERA、Real 和 MS COCO 数据集上预训练的模型权重。

项目结构

  • train.py:用于训练新模型的脚本。
  • detect_eval.py:用于检测和评估模型的脚本。
  • nocs_map_cube.py:用于在 Blender 中渲染 NOCS 映射的脚本。
  • data/:存储数据集和对象网格文件的目录。
  • logs/:存储训练日志和预训练权重的目录。

2. 项目快速启动

环境准备

确保你的环境中安装了以下依赖:

  • Python 3.5
  • Tensorflow 1.14.0
  • Keras 2.3.0
  • CUDA 10.0 & cuDNN 7.41

安装步骤

  1. 克隆项目仓库:

    git clone https://github.com/hughw19/NOCS_CVPR2019.git
    cd NOCS_CVPR2019
    
  2. 安装依赖:

    pip install -r requirements.txt
    

训练模型

使用预训练的 COCO 权重训练新模型:

python3 train.py

检测和评估

使用训练好的模型进行检测和评估:

# 检测
python3 detect_eval.py --mode detect --ckpt_path=/logs/ckpt --draw

# 评估
python3 detect_eval.py --mode eval --ckpt_path=/output/ckpt

3. 应用案例和最佳实践

应用案例

  • 机器人抓取:通过估计对象的 6D 姿态和尺寸,机器人可以更准确地抓取和操作对象。
  • 增强现实:在 AR 应用中,准确的对象姿态估计可以帮助将虚拟对象与现实世界更好地融合。

最佳实践

  • 数据预处理:确保数据集中的对象网格文件和深度图像格式正确,以便模型能够正确处理。
  • 模型调优:根据具体应用场景调整模型的超参数,以获得最佳性能。
  • 多模型集成:可以尝试将 NOCS 模型与其他姿态估计模型集成,以提高整体估计的准确性。

4. 典型生态项目

相关项目

  • Tensorflow Object Detection API:用于对象检测的 Tensorflow 官方 API,可以与 NOCS 结合使用,进一步提升对象检测和姿态估计的性能。
  • Blender:用于渲染 NOCS 映射的 3D 建模工具,提供了强大的 3D 渲染和动画功能。

社区资源

  • GitHub Issues:在项目 GitHub 页面上查看和提交问题,获取社区支持。
  • Stanford Geometry Lab:访问斯坦福几何实验室的项目页面,了解更多关于 NOCS 的研究和应用。

通过以上步骤,你可以快速上手 NOCS_CVPR2019 项目,并将其应用于各种实际场景中。

NOCS_CVPR2019 [CVPR2019 Oral] Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation on Python3, Tensorflow, and Keras NOCS_CVPR2019 项目地址: https://gitcode.com/gh_mirrors/no/NOCS_CVPR2019

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伏崴帅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值