Fillerbuster: 多视角场景补全的最佳实践教程

Fillerbuster: 多视角场景补全的最佳实践教程

fillerbuster Fillerbuster: Multi-View Scene Completion for Casual Captures fillerbuster 项目地址: https://gitcode.com/gh_mirrors/fi/fillerbuster

1. 项目介绍

Fillerbuster 是一个用于解决多种场景补全任务的多视角扩散模型。该模型从零开始训练,能够处理日常捕获的场景中的缺失部分,提供高质量的图像补全效果。Fillerbuster 的目标是填补那些因为相机视角限制或遮挡而无法看到的场景部分。

2. 项目快速启动

要开始使用 Fillerbuster,您需要按照以下步骤设置开发环境:

# 创建并激活 fillerbuster 环境
conda create -n fillerbuster python=3.10 -y
conda activate fillerbuster

# 安装依赖
pip install torch torchvision --index-url https://download.pytorch.org/whl/124
pip install -e .

接下来,下载模型权重和推理所需的数据:

  • 从释放的文件夹中下载 Fillerbuster 权重,并将其放置在 checkpoints 文件夹中。
  • 下载 CLIP 权重到 checkpoints 文件夹。
  • 下载其他工作的数据集,如 LERF、Nerfbusters、NeRFiller 和 Nerfstudio,并将数据解压到指定的 data 文件夹。

最后,运行示例推理脚本 demo.ipynb 来查看模型效果。

3. 应用案例和最佳实践

以下是几个使用 Fillerbuster 的应用案例和最佳实践:

完成日常捕获的场景

使用以下命令来补全 Nerfbusters 数据集中的场景:

ns-train fillerbuster --data data/nerfbusters-dataset/picnic --output-dir outputs/nerfstudio-outputs nerfstudio-data --eval-mode filename

无校准场景补全

对于视频数据,可以使用以下脚本进行无校准场景补全:

python fillerbuster/scripts/run_uncalibrated_scene_completion.py --data data/videos/couch.mov --output-dir outputs/uncalibrated-outputs

补全被遮挡的3D区域

对于 NeRFiller 数据集,可以使用以下命令来补全被遮挡的3D区域:

ns-train fillerbuster --data data/nerfiller-dataset/billiards --output-dir outputs/nerfstudio-outputs --pipeline.inpainter nerfiller --pipeline.dilate-iters 5 --pipeline.context-size 32 --pipeline.densify-num 0 --pipeline.anchor-rotation-num 0 --pipeline.anchor-vertical-num 0

4. 典型生态项目

Fillerbuster 的生态项目包括但不限于以下几种:

  • 数据集: LERF、Nerfbusters、NeRFiller 和 Nerfstudio 等数据集为 Fillerbuster 提供了丰富的训练和测试数据。
  • 工具和库: 如 diffusers、nerfstudio、torchmetrics 和 transformers 等开源库和工具为 Fillerbuster 提供了底层支持和功能扩展。
  • 社区贡献: 开发者和使用者通过 GitHub 提交的 issue 和 pull request 为 Fillerbuster 的改进和优化提供了动力。

通过遵循以上最佳实践,您可以更有效地利用 Fillerbuster 来完成您的场景补全任务。

fillerbuster Fillerbuster: Multi-View Scene Completion for Casual Captures fillerbuster 项目地址: https://gitcode.com/gh_mirrors/fi/fillerbuster

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤瑶熠Paulette

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值