Fillerbuster: 多视角场景补全的最佳实践教程
1. 项目介绍
Fillerbuster 是一个用于解决多种场景补全任务的多视角扩散模型。该模型从零开始训练,能够处理日常捕获的场景中的缺失部分,提供高质量的图像补全效果。Fillerbuster 的目标是填补那些因为相机视角限制或遮挡而无法看到的场景部分。
2. 项目快速启动
要开始使用 Fillerbuster,您需要按照以下步骤设置开发环境:
# 创建并激活 fillerbuster 环境
conda create -n fillerbuster python=3.10 -y
conda activate fillerbuster
# 安装依赖
pip install torch torchvision --index-url https://download.pytorch.org/whl/124
pip install -e .
接下来,下载模型权重和推理所需的数据:
- 从释放的文件夹中下载 Fillerbuster 权重,并将其放置在
checkpoints
文件夹中。 - 下载 CLIP 权重到
checkpoints
文件夹。 - 下载其他工作的数据集,如 LERF、Nerfbusters、NeRFiller 和 Nerfstudio,并将数据解压到指定的
data
文件夹。
最后,运行示例推理脚本 demo.ipynb
来查看模型效果。
3. 应用案例和最佳实践
以下是几个使用 Fillerbuster 的应用案例和最佳实践:
完成日常捕获的场景
使用以下命令来补全 Nerfbusters 数据集中的场景:
ns-train fillerbuster --data data/nerfbusters-dataset/picnic --output-dir outputs/nerfstudio-outputs nerfstudio-data --eval-mode filename
无校准场景补全
对于视频数据,可以使用以下脚本进行无校准场景补全:
python fillerbuster/scripts/run_uncalibrated_scene_completion.py --data data/videos/couch.mov --output-dir outputs/uncalibrated-outputs
补全被遮挡的3D区域
对于 NeRFiller 数据集,可以使用以下命令来补全被遮挡的3D区域:
ns-train fillerbuster --data data/nerfiller-dataset/billiards --output-dir outputs/nerfstudio-outputs --pipeline.inpainter nerfiller --pipeline.dilate-iters 5 --pipeline.context-size 32 --pipeline.densify-num 0 --pipeline.anchor-rotation-num 0 --pipeline.anchor-vertical-num 0
4. 典型生态项目
Fillerbuster 的生态项目包括但不限于以下几种:
- 数据集: LERF、Nerfbusters、NeRFiller 和 Nerfstudio 等数据集为 Fillerbuster 提供了丰富的训练和测试数据。
- 工具和库: 如 diffusers、nerfstudio、torchmetrics 和 transformers 等开源库和工具为 Fillerbuster 提供了底层支持和功能扩展。
- 社区贡献: 开发者和使用者通过 GitHub 提交的 issue 和 pull request 为 Fillerbuster 的改进和优化提供了动力。
通过遵循以上最佳实践,您可以更有效地利用 Fillerbuster 来完成您的场景补全任务。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考