CapDec: 使用CLIP和GPT2进行零样本图像字幕的开源项目

CapDec: 使用CLIP和GPT2进行零样本图像字幕的开源项目

CapDec CapDec: SOTA Zero Shot Image Captioning Using CLIP and GPT2, EMNLP 2022 (findings) CapDec 项目地址: https://gitcode.com/gh_mirrors/ca/CapDec

1. 项目基础介绍与主要编程语言

CapDec是一个由David Huji维护的开源项目,旨在通过文本训练,不依赖图像数据,实现图像字幕生成。该项目主要使用了Python语言,结合了深度学习框架,如CLIP和GPT2,实现了在不直接训练图像的情况下,生成高质量的图像字幕。

2. 项目的核心功能

CapDec的核心功能是零样本图像字幕生成。它通过以下步骤实现:

  • 利用CLIP模型来提取图像特征和文本特征之间的关联。
  • 使用GPT2模型根据这些关联生成图像字幕。
  • 项目还包含了利用开源数据集进行训练和评估的功能,如COCO和Flickr30K等。

3. 项目最近更新的功能

根据项目的最新提交记录,最近的更新包括:

  • 对数据预处理脚本的改进,以支持更灵活的数据格式和路径配置。
  • 对训练脚本的优化,增加了新的训练参数,如学习率调整、批次大小等,以改善模型的训练效果。
  • 引入了对性别偏见进行调整的功能,通过简单的文本编辑,使得生成的字幕更加平衡。
  • 提供了预训练的模型权重,用户可以直接下载使用,而不需要从头开始训练。

以上就是关于CapDec项目的推荐内容,该项目为开源社区提供了强大的零样本图像字幕生成工具,具有很高的研究价值和实际应用潜力。

CapDec CapDec: SOTA Zero Shot Image Captioning Using CLIP and GPT2, EMNLP 2022 (findings) CapDec 项目地址: https://gitcode.com/gh_mirrors/ca/CapDec

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谭凌岭Fourth

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值