深度图匹配共识(DGMC):图神经网络在图匹配中的应用

深度图匹配共识(DGMC):图神经网络在图匹配中的应用

deep-graph-matching-consensus项目地址:https://gitcode.com/gh_mirrors/de/deep-graph-matching-consensus


项目介绍

深度图匹配共识(DGMC)是一个基于PyTorch实现的开源项目,旨在通过两阶段的神经架构学习并优化图之间的结构对应关系。该方法首先利用图神经网络计算节点的局部嵌入来初步排序节点间的软对应关系,然后通过同步消息传递网络迭代地重新排序这些软对应,以在图的局部邻域间达成一致性匹配。DGMC在理论上和实验上都证明了其消息传递机制能够计算出合理的邻域一致度量,进而改善图匹配效果。本项目由Matthias Fey等人于ICLR 2020提出。


项目快速启动

要开始使用深度图匹配共识(DGMC),确保你的开发环境已安装以下依赖:

  • PyTorch >= 1.2.0
  • PyTorch Geometric >= 1.5.0
  • KeOps >= 1.1.0

安装步骤

打开终端,运行以下命令来安装DGMC:

python setup.py install

运行示例

项目提供了针对不同数据集的训练和评估脚本。例如,如果你想在Pascal VOC数据集上运行,可以执行以下命令:

cd examples/
python pascal.py

同样的,对于其他数据集(如WILLOW-ObjectClass、PascalPF、DBP15K),分别使用对应的脚本进行训练或评估。


应用案例与最佳实践

DGMC广泛适用于多个领域,包括但不限于计算机视觉中的图像识别与配对、社交网络分析中用户行为模式的匹配以及化学分子结构比对。最佳实践中,用户应该首先明确自己的图数据特点,选择合适的数据集进行模型训练。为了达到最优性能,调整图神经网络的层数、节点嵌入维度和迭代次数等超参数是必要的。实际应用时,考虑图的异构性、边的属性以及潜在的噪声是提升匹配准确率的关键。


典型生态项目

虽然直接相关的典型生态项目在上述资料中未详细列出,但DGMC属于图神经网络领域的一部分,与之相辅相成的生态项目可能包括但不限于图分类库、图生成模型或其他专注于特定图处理任务(如社区检测、图聚类)的工具。开发者和研究人员常将DGMC与其他开源图处理库结合,比如NetworkX用于图的构建和预处理,或是DGL提供更广泛的图神经网络算法支持,以应对复杂的图数据分析场景。


通过遵循以上指南,你可以成功集成并探索DGMC,进一步推动你在图匹配领域的研究或应用开发。记得在利用此代码进行自己的工作时,恰当引用原始论文以尊重作者贡献。

deep-graph-matching-consensus项目地址:https://gitcode.com/gh_mirrors/de/deep-graph-matching-consensus

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邬楠满Seaman

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值